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T.-H. HUBERT CHAN, Department of Computer Science, The University of Hong Kong

FEI CHEN, Huawei Noah’s Ark Lab, Hong Kong

XIAOWEI WU, Department of Computer Science, The University of Hong Kong

We prove the first non-trivial performance ratio strictly above 0.5 for the weighted Ranking algorithm on the

oblivious matching problem where nodes in a general graph can have arbitrary weights.

We have discovered a new structural property of the ranking algorithm: if a node has two unmatched

neighbors, then it will still be matched even when its rank is demoted to the bottom. This property allows us

to form LP constraints for both the weighted and the unweighted versions of the problem.

Using a new class of continuous linear programming (LP), we prove that the ratio for the weighted case

is at least 0.501512, and we improve the ratio for the unweighted case to 0.526823 (from the previous best

0.523166 in SODA 2014). Unlike previous continuous LP, in which the primal solution must be continuous

everywhere, our new continuous LP framework allows the monotone component of the primal function to

have jump discontinuities, and the other primal components to take non-conventional forms, such as the

Dirac δ function.
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1 INTRODUCTION

We analyze the Ranking algorithm for the (node-weighted) Oblivious Matching Problem on ar-
bitrary graphs (Aronson et al. 1995; Aggarwal et al. 2011; Poloczek and Szegedy 2012; Goel and
Tripathi 2012; Devanur et al. 2013; Chan et al. 2014). While the classical maximum matching prob-
lem (Micali and Vazirani 1980) is well understood, the oblivious version is motivated by online
advertising (Goel and Mehta 2008; Aggarwal et al. 2011) and exchange settings (Roth et al. 2004),
in which information about the underlying graphs might be unknown. We state the problem for-
mally as follows.
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Oblivious Matching Problem. An adversary commits to a simple undirected graph G = (V ,E),
where each node u ∈ V has non-negative weight wu . The nodes V (where n = |V |) and their
weights are revealed to the (randomized) algorithm, while the edges E are kept secret. The

algorithm returns a list L that gives a permutation of the set ( V
2 ) of unordered pairs of nodes. Each

pair of nodes in G is probed according to the order specified by L to form a matching greedily. In
the round when a pair e = {u,v} is probed, if both nodes are currently unmatched and the edge e
is in E, then the two nodes will be matched to each other; otherwise, we skip to the next pair in
L until all pairs in L are probed. The goal is to maximize the performance ratio of the (expected)
sum of weights of nodes matched by the algorithm to that of a maximum weight matching in
G.

Weighted Ranking Algorithm. Given the node weightsw , the algorithm determines a distribution
Dw on permutations of V . It samples a permutation π from Dw and returns a list L of unordered
pairs according to the lexicographical order induced by π , where nodes appearing earlier in the
permutation have higher priority. Specifically, for a permutation π : V → [n], given two pairs e1

and e2 (where for each j, ej = {uj ,vj } and π (uj ) < π (vj )), the pair e1 has higher priority than e2 if
(i) π (u1) < π (u2) or (ii) u1 = u2 and π (v1) < π (v2).

Note that a Ranking algorithm is characterized by how it determines the distribution Dw on
permutations of V . For instance, the (deterministic) greedy algorithm uses the permutation of
nodes sorted in non-increasing order of weights; it can be shown that its performance ratio is at
least 0.5.

For nodes having uniform weight (also known as the unweighted case), it is known (Chan et al.
2014) that sampling a permutation on V uniformly at random gives ratio strictly larger than 0.5.
The interesting question is whether the result can be extended for the case when the nodes in an
arbitrary graph have arbitrary weights.

1.1 Background of the Problem

Uniform Weight. For uniform weight, Dyer and Frieze (1991) showed that the performance ratio
is 0.5 + o(1) when the permutation of unordered pairs is chosen uniformly at random. In the mid-
1990s, Aronson et al. (1995) showed that the Modified Randomized Greedy algorithm (MRG) has
ratio 0.5 + ϵ (where ϵ = 1

400000 ). For bipartite graphs, a version of the ranking algorithm was first

proposed by Karp et al. (1990) to solve Online Bipartite Matching with ratio 1 − 1
e

, which directly
translates to the same ratio for the Oblivious Matching Problem.

Since running Ranking on bipartite graphs for the Oblivious Matching Problem is equivalent
to running the ranking algorithm for the Online Bipartite Matching problem with random arrival

order, the result of Karande et al. (2011) implies that the ranking algorithm has a ratio at least 0.653
for the Oblivious Matching Problem on bipartite graphs. Mahdian and Yan (2011) improved the
ratio to 0.696. Karande et al. (2011) also constructed a hard instance in which Ranking performs
no better than 0.727.

For Oblivious Matching Problem on arbitrary graphs, Poloczek and Szegedy (2012) analyzed the
MRG algorithm and gave ratio 1

2 +
1

256 ≈ 0.5039. However, from personal communication with the
authors, we are told that they are currently bridging some gaps in their proof at the time of writ-
ing. Goel and Tripathi (2012) showed a hardness result of 0.7916 for any algorithm and 0.75 for
adaptive vertex-iterative algorithms. They also analyzed the Ranking algorithm for a better per-
formance ratio but later withdrew the paper (Goel and Tripathi 2013) when a bug was discovered
in their proof. In a recent SODA 2014 paper, Chan et al. (2014) proved that Ranking algorithm has
performance ratio at least 0.523166. We improve the analysis in this paper.
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General Weights: Weighted Ranking. Aggarwal et al. (2011) showed that the ranking algorithm
can be applied to Online Bipartite Matching when the offline nodes have general weights; they
proved that the performance ratio is 1 − 1

e
. Devanur et al. (2013) gave an alternative proof using

randomized primal-dual analysis.
We observe that their analysis can be applied to the node-weighted Oblivious Matching Prob-

lem on bipartite graphs. We use Ω to denote the sample space of configurations from which the
algorithm derives its randomness. Specifically, the weighted Ranking algorithm considers an ad-

justment function φ (t ) := 1 − et−1 for t ∈ [0, 1]; it samples σ ∈ Ω∞ := [0, 1]V uniformly at random,
and uses the nodes sorted in non-increasing order of the adjusted weight w (σ ,u) := φ (σ (u)) ·wu

as the permutation in our earlier description. We consider a different adjustment function φ in this
article.

Since their analysis assumes that the online nodes arrive in arbitrary order, by exchanging the
roles of online and offline nodes for both partition of nodes, it can be shown that weighted Ranking

achieves the same ratio of 1 − 1
e

on bipartite graphs.
In this article, we prove that a weighted version of Ranking can achieve ratio strictly larger

than 0.5; as far as we know, there is no such result previously in the literature for node-weighted
Oblivious Matching Problem on general graphs.

1.2 Our Contribution and Results

We first describe the challenges encountered when previous techniques are applied to the node-
weighted version of the problem on general graphs. We call σ ∈ Ω a configuration and (σ ,u) ∈
Ω ×V an instance. We call an instance (σ ,u) good if u is matched when random configuration σ is
chosen, and otherwise it is bad.

—Why is the problem difficult on general graphs (as opposed to bipartite graphs)? Bipartite
graphs have the following nice property. Suppose in configuration σ , node u is unmatched,
while its partner u∗ in the optimal matching is matched to some node v . If the rank of u is
promoted to form configuration σ ′, then u∗ will be matched to some node v ′ such that the
adjusted weight w (σ ′,v ′) ≥ w (σ ,v ) does not decrease. This naturally gives a way to relate
the bad instance (σ ,u) to the good instance (σ ′,v ′), but unfortunately this property does
not hold in general graphs. In fact,u∗ might be unmatched in σ ′ as a result ofu’s promotion.

—Why is the problem difficult when nodes have arbitrary weights (as opposed to uniform

weight)? In previous work (Chan et al. 2014) on unweighted case, when u∗ is matched in σ ′

in the above scenario, it is argued that the bad instance (σ ,u) can be related to the good
instance (σ ′,v ), where v is matched in σ ′ to u∗. However, there is no guarantee that the
adjusted weight w (σ ′,v ) of the good instance is at least w (σ ,u), which is needed as in Ag-
garwal et al. (2011) and Devanur et al. (2013) to analyze the ratio for the weighted version.

Exploiting Structural Properties of Ranking. We analyze how the resulting matching would
change if the rank of one node is changed (in Lemma 3.5), and we give finer classification of
good instances. In particular, the following notions are useful for relating bad instances to good
instances to form linear programming (LP) constraints.

—Graceful Instance. A good instance (σ ,u) is graceful if u is currently matched to a node v
such that its optimal partner v∗ is also matched. This is similar to the “Type 2 good event”
defined in Goel and Tripathi (2012). This idea for keeping track of when both partners v
and v∗ in the optimal matching are currently matched is also used in Karande et al. (2011)
and Poloczek and Szegedy (2012).
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—Perpetual Instance. We discover a new structural property of Ranking that if in a good
instance (σ ,u), node u has two unmatched neighbors, then (σ ,u) is perpetually good in the
sense that u will still be matched even when its rank is demoted to the bottom.

Weighted vs. Unweighted. As in Aggarwal et al. (2011), we analyze the discrete sample space

Ωm := [m]V (with the adjustment function φ (t ) := 1 − e17t−1
e17−1

, ψ (i ) := φ ( i
m

) and adjusted weight
w (σ ,u) := ψ (σ (u)) ·wu ), and we show that the performance ratio of weighted Ranking is at least

the optimal value of some finite LP
ψ
m with m variables. Using similar techniques, we also derive a

new finite LPU
n , which gives a lower bound on the performance of unweighted Ranking running

on graphs of size n. An important difference is that LP
ψ
m does not have a dependence on the size of

G, and hence, computing the optimal value of LP
ψ
m for some large enough m is sufficient to prove

a lower bound on the ratio of weighted Ranking.

Theorem 1.1 (Weighted Ranking with Finite Sampling). Form = 10, 000, weighted Ranking

using sample space Ωm (with adjustment function φ (t ) := 1 − e17t−1
e17−1

) has performance ratio at

least 0.501505.

Even though we can prove by computing the value of some finite LP1 that there exists a weighted
Ranking algorithm that achieves ratio strictly larger than 0.5, it will be interesting to investigate

the limiting behavior as m tends to infinity, because experiments suggest that the value of LP
ψ
m

increases asm increases. Moreover, for the unweighted version of the problem, the corresponding
LPU

n is actually decreasing as n increases, and the limiting behavior has to be considered to give a
proof on the ratio.

New Class of Continuous LP with Jump Discontinuity. We develop a new class of continuous
LP that generalizes the framework in Chan et al. (2014) and contains a unified constraint that
can capture both the weighted and the unweighted cases. The primal-dual framework in Chan
et al. (2014) requires the primal solution to be continuous everywhere, but experiments on the

finite LP
ψ
m suggest that the optimal primal solution might not be continuous. Hence, we extend

our weak duality and complementary slackness characterization to allow jump discontinuity on
the primal component on which monotonicity is imposed. For other primal components with no
monotonicity constraint, our framework can incorporate non-conventional functions such as the
Dirac δ function, which is sometimes useful in our proofs. We use our continuous LP framework
to obtain better analysis for both the weighted and the unweighted cases.

Given an adjustment function φ, our techniques can give a lower bound on the ratio in terms
of a continuous LP

φ
∞. However, at the moment, we have not tried to obtain the best possible φ yet,

since the best φ to optimize LP
φ
∞ might not necessarily be the best φ to optimize the ratio. Indeed,

we are aware of other adjustment functions that can achieve even slightly better ratios, but we
just present here one of simple form that can cross the 0.5 barrier.

Theorem 1.2 (Weighted Ranking with Continuous Sampling). Using continuous sample

space Ω∞ (with adjustment function φ (t ) := 1 − e17t−1
e17−1

), weighted Ranking has performance ratio

at least 0.501512.

Theorem 1.3 (Unweighted Ranking). Unweighted Ranking has performance ratio at

least 0.526823.

1Experimental results on solving the LP can be found at http://i.cs.hku.hk/∼algth/project/online_matching/weighted.html.

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 12. Publication date: April 2018.

http://i.cs.hku.hk/protect $elax sim $algth/project/online_matching/weighted.html


Analyzing Node-Weighted Oblivious Matching Problem via Continuous LP 12:5

Our result for the node-weighted case achieves the first non-trivial performance ratio that is
strictly larger than 0.5. Although our new theoretical guarantee for the unweighted case has im-
provement only at the third decimal place over the previous result (0.523 in Chan et al. (2014)), we
believe our new combinatorial analysis will shed light on the problem and inspire further research
in the community. Moreover, our generalized framework of continuous LP provides a powerful
tool to analyze the asymptotic behavior as the size of finite LP grows, and it will be of independent
interest to explore further applications.

2 PRELIMINARIES

We denote [m] = {1, 2, . . . ,m} for any positive integerm. Suppose an adversary commits to a sim-
ple undirected graphG = (V ,E) with n = |V | nodes, where each nodeu has a non-negative weight
wu . We fix some maximum weight matching OPT in G. When the context is clear, we also use
OPT to denote the set of nodes covered by the matching. Observe that in general OPT might be
a proper subset of V . Let w (OPT) =

∑
u ∈OPTwu be the total weight of OPT. For any u ∈ V , if u is

matched in OPT, then we denote by u∗ the partner of u in OPT, and we call u∗ the optimal partner

of u. If u � OPT, then we say that u∗ does not exist.

Weighted Ranking. As described in the introduction, it suffices to describe how the algorithm
samples a permutation of nodes, which induces a lexicographical order on the node pairs that is
used for probing. As in Aggarwal et al. (2011) and Devanur et al. (2013), the algorithm fixes an
adjustment function φ : [0, 1]→ [0, 1] that is non-increasing. The function φ (t ) := 1 − et−1 is used
in Aggarwal et al. (2011) and Devanur et al. (2013). We shall consider other adjustment functions
such that φ (1) = 0 also holds (which is needed for the limiting case).

Let Ω be the sample space of configurations from which the algorithm derives its randomness.
Let m be a large enough integer. For ease of description, we will mostly consider the discrete
space Ωm := [m]V . The algorithm samples σ ∈ Ωm uniformly at random, which is equivalent to
picking σ (u) ∈ [m] uniformly at random and independently for each u ∈ V . We denote ψ (i ) :=
φ ( i

m
). Then, a permutation on V is induced by σ by sorting the nodes in non-increasing order

of adjusted weight w (σ ,u) := ψ (σ (u)) ·wu , where ties are resolved deterministically (for instance
by the identities of the nodes). We denote (σ ,u) > (σ ,v ) when node u comes before v in the
permutation induced by σ , in which case u has higher priority than v .

In the limiting case whenm tends to infinity, σ is drawn from continuous Ω∞ := [0, 1]V , and the
adjusted weight is given byw (σ ,u) := φ (σ (u)) ·wu . We omit the subscript for Ω when the context
is clear.

We denoteU := Ω ×V as the set of instances. LetM (σ ) be the matching obtained when Ranking

is run with configuration σ . If u is matched to some v after running Ranking with configuration
σ , then we say that u is matched in σ and v is the (current) partner of u in σ . An instance (σ ,u) is
good if u is matched in σ , and otherwise it is bad. An event is a subset of instances.

Given σ ∈ Ωm , let σ j
u be obtained by setting σ j

u (u) = j and σ j
u (v ) = σ (v ) for all v � u.

Definition 2.1 (Events). For each i ∈ [m], define the following:

—Rank-i good event: Qi := {(σ ,u) |σ (u) = i and u is matched in σ }
—Rank-i bad event: Ri := {(σ ,u) |σ (u) = i,u is not matched in σ and u ∈ OPT}

Let Q := ∪i ∈[m]Qi and R := ∪i ∈[m]Ri .

Notice that Qi and Ri are disjoint. While Qi could involve nodes that are not in OPT, Ri only
involves nodes in OPT; this idea also appears in Aggarwal et al. (2011) for dealing with the case

when OPT is a proper subset of V . Define xi :=
∑

(σ ,u )∈Qi
wu

w (OPT) ·mn−1 , which can be interpreted as the

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 12. Publication date: April 2018.
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conditional expected contribution of the nodes given that they are at rank i . We next derive some
properties of the xi ’s.

—Monotonicity. For i ≥ 2, we have xi−1 ≥ xi ≥ 0, since if (σ ,u) ∈ Qi , then (σ i−1
u ,u) ∈ Qi−1.

However, 1 ≥ x1 does not necessarily hold, since there may exist u � OPT and (σ ,u) ∈ Q1.
—Loss due to unmatched nodes. Similar to xi associated withQi , we consider an analogous

quantity associated with Ri :

x i :=
∑

(σ ,u )∈Ri
wu

w (OPT) ·mn−1 =

∑
(σ ,u )∈Qi ∪Ri

wu−
∑

(σ ,u )∈Qi
wu

w (OPT) ·mn−1 ≥ w (OPT) ·mn−1−∑(σ ,u )∈Qi
wu

w (OPT) ·mn−1 = 1 − xi , (1)

where the inequality
∑

(σ ,u )∈Qi∪Ri
wu ≥ w (OPT) ·mn−1 could be strict, because Qi might

involve nodes not in OPT.
—Performance Ratio. The performance ratio is the expected sum of weights of matched

nodes divided by w (OPT), which is given by
∑

(σ ,u )∈Q wu

w (OPT) ·mn =
1
m

∑m
i=1 xi .

Definition 2.2 (Marginally Bad Event). For i ∈ [m], we define rank-i marginally bad event as
follows. Let S1 := R1; for i ≥ 2, let Si := {(σ ,u) ∈ Ri |(σ i−1

u ,u) ∈ Qi−1}.
Let S := ∪i ∈[m]Si and αi :=

∑
(σ ,u )∈Si

wu

w (OPT) ·mn−1 for all i ∈ [m].

Observe that for an instance (σ ,u) such that (σm
u ,u) is bad, there exists a unique j ∈ [m] such

that (σ j
u ,u) ∈ S j , and we say that j is the marginal position of (σ ,u).

Relating xi ’s and αi ’s. From a marginally bad instance (σ ,u) ∈ Si , node u will be matched when
its rank is promoted to i − 1. Hence, for i ≥ 2, we immediately have

αi ≤
∑

(σ ,u )∈Qi−1
wu−

∑
(σ ,u )∈Qi

wu

w (OPT) ·mn−1 = xi−1 − xi . (2)

Moreover, for i ∈ [m], any bad instance (σ ,u) ∈ Ri has a unique marginal position j ∈ [i] such

that (σ j
u ,u) ∈ S j ; for each (σ ,u) ∈ S j such that j ≤ i , we also have (σ i

u ,u) ∈ Ri . Hence, there is a
one-one correspondence between Ri and ∪i

j=1S j , and so we have

∑i
j=1 α j =

∑i
j=1

∑
(σ ,u )∈Sj

wu

w (OPT) ·mn−1 =

∑
(σ ,u )∈Ri

wu

w (OPT) ·mn−1 = x i ≥ 1 − xi . (3)

Remark. Observe that when all nodes in V are covered by OPT, equality holds for both Equa-
tions (2) and (3). In fact, the following lemma allows us to remove the αi ’s from the LP constraints.

Lemma 2.3. Suppose that {bi }m+1
i=1 is non-negative and non-increasing such that bm+1 = 0, and

{ci }m+1
i=1 is non-decreasing such that c1 = 0. Then, we have

(a)
∑m

i=1 biαi ≥ b1 −
∑m

i=1 (bi − bi+1)xi ,

(b)
∑m

i=1 biciαi ≥ −
∑m

i=1 (bici − bi+1ci+1)xi .

Proof. Statement (a) follows, because

m∑
i=1

biαi =

m∑
i=1

(bi − bi+1)
i∑

j=1

α j ≥
m∑

i=1

(bi − bi+1) (1 − xi ) = b1 −
m∑

i=1

(bi − bi+1)xi ,

where the inequality comes from Equation (3).
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For statement (b), observing that c1 = 0, we can assume that α1 = x0 − x1, where x0 = 1. Let
C = maxi ci , and define di := C − ci ≥ 0. Then, we have

m∑
i=1

biciαi =

m∑
i=1

Cbiαi −
m∑

i=1

bidiαi ≥ Cb1 −C
m∑

i=1

(bi − bi+1)xi −
m∑

i=1

bidi (xi−1 − xi )

= −
m∑

i=1

(bici − bi+1ci+1)xi ,

where in the inequality we apply statement (a) to the first term (which is still valid, because α1 ≥
1 − x1 holds), and apply α1 = x0 − x1 and Equation (2) to the second term. �

Fact 2.1 (Ranking is Greedy). Suppose Ranking is run with configuration σ . If (σ ,u) is bad, then

each neighbor of u (in G) is matched in σ to some node v such that (σ ,v ) > (σ ,u).

3 FORMULATING LP CONSTRAINTS FOR WEIGHTED CASE

In this section, we define some relations from (marginally) bad events to good events to formulate
our LP constraints. We describe a general principle that is a weighted version of the argument
used in Chan et al. (2014).

Weighting Principle. Suppose f is a relation from subset A to subset B of instances, where f (a)
is the set of elements in B that is related to a ∈ A, and f −1 (b) is the set of elements in A that is
related to b ∈ B. Recall that each instance a = (σ ,u) has adjusted weight w (a) = w (σ ,u). Suppose
further that for all a ∈ A, for all b ∈ f (a), w (a) ≤ w (b). Then, by considering the bipartite graph
H induced by f on A ∪ B, and comparing the weights of end-points for each edge in H , it follows
that
∑

a∈A | f (a) | ·w (a) ≤ ∑b ∈B | f −1 (b) | ·w (b).
We shall formulate constraints by considering relations between subsets of instances. The in-

jectivity of a relation f is the minimum integer q such that for all b ∈ B, | f −1 (b) | ≤ q. In this case,
we have ∑

a∈A
| f (a) | ·w (a) ≤ q

∑
b ∈B

w (b). (4)

3.1 Demoting Marginally Bad Instances

Lemma 3.1. We have 1
m

∑m
i=1[2ψ (i ) + (m − i ) (ψ (i ) −ψ (i + 1))]xi ≥ ψ (1).

Proof. We define a relation f from the set S of marginally bad instances to the set Q of good
instances. Observe that for a (marginally) bad instance (σ ,u), u is unmatched in σ and its optimal
partneru∗ exists. If we further demoteu by setting its rank to j ≥ σ (u), then the resulting matching
is unchanged. Therefore, by Fact 2.1, for each j ≥ σ (u), u∗ is matched to the same v such that

w (σ ,u) ≤ w (σ ,v ) = w (σ j
u ,v ). Hence, we can define

f (σ ,u) := {(σ j
u ,v ) |u∗ is matched to v in σ j

u , j ≥ σ (u)} ⊆ Q,

where | f (σ ,u) | =m − σ (u) + 1, and w (σ ,u) ≤ w (σ ′,v ) for all (σ ′,v ) ∈ f (σ ,u).
We next check the injectivity of f . Suppose (ρ,v ) ∈ f (σ ,u). Then, u∗ is the current partner ofv

in ρ, and this uniquely determines u, which is unmatched in ρ. Hence, σ = ρ j
u , where j is uniquely

determined as the marginal position of (ρ,u). Therefore, the injectivity is 1.
Hence, our weighting principle Equation (4) gives the following:

m∑
i=1

∑
(σ ,u )∈Si

(m − i + 1)ψ (i )wu =
∑
a∈S
| f (a) | ·w (a) ≤

∑
b ∈Q

w (b) =
m∑

i=1

∑
(ρ,v )∈Qi

ψ (i )wv .

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 12. Publication date: April 2018.
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Dividing both sides by w (OPT) ·mn gives

1

m

m∑
i=1

(m − i + 1)ψ (i )αi ≤
1

m

m∑
i=1

ψ (i )xi .

Since we do not wish αi ’s to appear in our constraints, we derive a lower bound for the left-hand
side (LHS) in terms of xi ’s by applying Lemma 2.3 with bi := (m − i + 1)ψ (i ), whereψ (m + 1) can
be chosen to be any value. Rearranging gives the required inequality. �

3.2 Promoting Marginally Bad Instances

Lemma 3.2. We have

2

m

m∑
i=1

ψ (i ) · xm +
1

m

m∑
i=1

[5ψ (i ) − i (ψ (i + 1) −ψ (i ))] · xi ≥
3

m

m∑
i=1

ψ (i ).

To use the weighting principle, we shall define relations from marginally bad instances S to the
following subsets of special good instances.

Definition 3.3 (If v is matched, then would v∗ still be matched?). For i ∈ [m], let the graceful
instances be Yi := {(σ ,u) ∈ Qi |u is matched in σ to somev s.t.v∗ does not exist or is also matched

in σ }. Let yi :=
∑

(σ ,u )∈Yi
wu

w (OPT) ·mn−1 and Y := ∪i ∈[m]Yi .

Definition 3.4 (You will be matched even at the bottom). For i ∈ [m], let the perpetual instances

be Zi = {(σ ,u) ∈ Qi |(σm
u ,u) ∈ Qm }. Let zi =

∑
(σ ,u )∈Zi

wu

w (OPT ) ·mn−1 and Z := ∪i ∈[m]Zi .

By definition, we know that Yi ⊆ Qi , and hence xi ≥ yi ≥ 0. Moreover, observing that there
exists a bijection between Zi andQm that maps each (σ ,u) ∈ Zi to (σm

u ,u) ∈ Qm , we have zi = xm .
Suppose (σ ,u) is a good instance that has marginal position j. We wish to compare the matchings

produced by σ and σ j
u . Sometimes it is more convenient to consider an unmatched node as being

ignored. Specifically, given a configuration σ and a node u, running Ranking with σu means that
we still use σ to generate the probing order, but any edge involving u is ignored. Observe that if

(σ ,u) has a marginal position j, then σu and σ j
u will produce the same matching.

Lemma 3.5 (Ignoring One Node.). Supposeu is covered by the matchingM (σ ) produced byσ , and

M (σu ) is the matching produced by using the same probing list, but any edge involving u is ignored.

The symmetric difference M (σ ) ⊕ M (σu ) is an alternating path P = (u = u1,u2, . . . ,up ) such that for

all i ∈ [p − 2], (σ ,ui ) > (σ ,ui+2).

Proof. We can view probingG with σu as using the same list L of unordered node pairs to probe
another graphGu , which is the same asG except that the nodeu is labelled unavailable and will not
be matched in any case. After each round of probing, we compare what happens to the partially
constructed matchings M (σ ) in G and M (σu ) in Gu . For the sake of this proof, “unavailable” and
“matched” are the same availability status, while “unmatched” is a different availability status.

We apply induction on the number of rounds of probing. Observe that the following invariants
hold initially. (i) There is exactly one node known as the crucial node (which is initially u) that has
different availability in G and Gu . (ii) The symmetric difference M (σ ) ⊕ M (σu ) is an alternating
path P connecting u to the current crucial node; initially, both M (σ ) and M (σu ) are empty, and
path P is degenerate and contains only u. (iii) If the path P = (u = u1,u2, . . . ,ul ) contains l ≥ 3
nodes, then for all i ∈ [l − 2], then (σ ,ui ) > (σ ,ui+2).

Consider the inductive step. Suppose currently the alternating path M (σ ) ⊕ M (σu ) contains l
nodes, where ul is crucial. Observe that the crucial node and M (σ ) ⊕ M (σu ) do not change in a

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 12. Publication date: April 2018.
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round except for the case when the pair being probed is an edge in G (and Gu ), involving the
crucial node ul with another currently unmatched node ul+1 in G, which is also unmatched in Gu

(because the induction hypothesis states that all nodes but ul have the same availability status in
G and Gu ).

Sinceul has different availability inG andGu , butul+1 is unmatched in bothG andGu , it follows
that the edge e := {ul ,ul+1} is added to exactly one of M (σ ) and M (σu ). Hence, the edge e is added
to extend the alternating path M (σ ) ⊕ M (σu ), and the node ul+1 becomes crucial.

Next, it remains to show that if l ≥ 2, then (σ ,ul−1) > (σ ,ul+1). Suppose we go back in time, and
consider at the beginning of the round when the edge {ul−1,ul } is about to be probed, and ul−1 is
crucial. By the induction hypothesis, both ul and ul+1 are unmatched in both G and Gu . It follows
that (σ ,ul−1) > (σ ,ul+1), because otherwise the edge {ul−1,ul } would have lower probing priority
than {ul+1,ul }. This completes the inductive step. �

Lemma 3.6 (Two Unmatched Neighbors Implies Perpetual). Suppose in configuration σ , node

u is matched and has two unmatched neighbors in G. Then, (σ ,u) ∈ Z is perpetual.

Proof. If we assume the opposite, then u will be unmatched in σm
u . Suppose x and y are

two neighbors of u that are unmatched in σ . Then, by Lemma 3.5, the symmetric difference
M (σ ) ⊕ M (σm

u ) is an alternating path starting fromu, and hence at most one of x andy will remain
unmatched in σm

u .
This implies that in σm

u , the unmatched node u will have at least one unmatched neighbor; this
contradicts the fact that that Ranking will always produce a maximal matching. �

Next, we derive inequalities involving the graceful instances. Combining the inequalities, we
can obtain the crucial constraint involving only xi ’s for achieving a ratio that is strictly larger
than 0.5.

Lemma 3.7 (You are Unmatched, Because Someone is Not Graceful). We have the following

inequality: 1
m

∑m
i=1ψ (i )yi ≤ 1

m

∑m
i=1ψ (i ) (2xi − 1).

Proof. We define a relation from the set R of bad instances to the set Q\Y of good instances
that are not graceful.

Given any bad instance (σ ,u) ∈ R, we know that u∗ exists and is matched to some node v such
that w (σ ,v ) ≥ w (σ ,u), by Fact 2.1. Moreover, since v is matched to u∗ such that u is unmatched,
we know that (σ ,v ) ∈ Q\Y is good but not graceful. Hence, we define f (σ ,u) := {(σ ,v )}, wherev
is the current partner of u∗. Observe that each (σ ,v ) ∈ Q\Y can be related to a unique (σ ,u) ∈ R,
where u is the optimal partner of v’s current partner in σ . Hence, the injectivity of f is 1.

Hence, the weighting principle Equation (4) gives
∑

(σ ,u )∈R w (σ ,u) ≤ ∑(σ ,v )∈Q\Y w (σ ,v ). Di-

viding both sides by w (OPT) ·mn gives: 1
m

∑m
i=1ψ (i )x i ≤ 1

m

∑m
i=1ψ (i ) (xi − yi ).

Finally, using x i ≥ 1 − xi from Equation (1) and rearranging gives the required inequality. �

Lemma 3.8 (If You are Marginal, then Someone Else is Either Graceful or Perpet-
ual). We have the inequality: 1

m

∑m
i=1 (i − 1)ψ (i )αi ≤ 1

m

∑m
i=1ψ (i ) (3yi + 2zi ).

Proof. As mentioned earlier, we shall define two relations f and д from marginally bad S to
graceful Y and perpetual Z , respectively, such that the following properties hold:

1. For each a ∈ S , for each b ∈ f (a) ∪ д(a), w (a) ≤ w (b).
2. For each a ∈ S , | f (a) | + |д(a) | = σ (u) − 1.
3. The injectivity of f is at most 3 and the injectivity of д is at most 2.
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Suppose we have f and д with these properties. Then, our weighting principle Equation (4)
gives ∑

(σ ,u )∈S
(σ (u) − 1)w (σ ,u) ≤

∑
(ρ,v )∈Y

3w (ρ,v ) +
∑

(ρ,v )∈Z
2w (ρ,v ),

which by definition is equivalent to

m∑
i=1

(i − 1)ψ (i )
∑

(σ ,u )∈Si

wu ≤
m∑

i=1

ψ (i ) ���3
∑

(ρ,v )∈Yi

wu + 2
∑

(ρ,v )∈Zi

wu
��� .

Dividing both sides by w (OPT) ·mn gives the required inequality.
Next, we show how f and д are constructed such that all required properties hold.

Given marginally bad (σ ,u) ∈ S , we consider good instance (σ ′,u) ∈ Q , where σ ′ = σ j
u , j < σ (u)

is obtained by “promoting” u’s rank in σ . Note that by Fact 2.1, u∗ must be matched in σ to some
node v0 such that (σ ,v0) > (σ ,u). Let the partner of u in (σ ′,u) be p. The next claim is crucial for
the construction of f and д.

Claim 3.1. If w (σ ′,p) < w (σ ,u), then u∗ is matched in σ ′ to some node v such that w (σ ′,v ) ≥
w (σ ,v0) ≥ w (σ ,u). �

Proof. By Lemma 3.5, we know that the symmetric difference M (σ ′) ⊕ M (σ ) is an alternat-
ing path (u = u1,p = u2,u3,u4 . . .) that starts with u. Moreover, we have w (σ ′,u) ≥ w (σ ′,u3) ≥
w (σ ′,u5) ≥ . . . and w (σ ′,p) ≥ w (σ ′,u4) ≥ w (σ ′,u6) ≥ . . . . If u∗ is not contained in the alternat-
ing path, then directly we have v = v0, and hence the claim holds.

Assume thatu∗ is contained in the alternating path. Then,v0 must also appear in the alternating
path. Letv0 = ui . Sincew (σ ′,v0) = w (σ ,v0) ≥ w (σ ,u) > w (σ ′,p), we conclude that i must be odd.
By Lemma 3.5, we know that u∗ must be ui−1, since ui is matched to ui−1 in σ . Moreover, we know
that u∗ = ui−1 is matched to ui−2 in σ ′ such that w (σ ′,ui−2) ≥ w (σ ′,ui ) = w (σ ,v0). �

Next, we include instances in Y into f (σ ,u) and instances in Z into д(σ ,u) on a case by case

basis. Recall that for each 1 ≤ j < σ (u), we consider σ ′ = σ j
u ; moreover, after promoting u to rank

j, u is matched in σ ′ to p.
Case 1(a). u∗ is matched in σ ′ and w (σ ′,p) = w (σ ,p) ≥ w (σ ,u).
In this case, (σ ′,p) is graceful, because p is matched in σ ′ to u, whose optimal partner u∗ is also

matched. Hence, we include (σ ′,p) ∈ Y in f (σ ,u).
Case 1(b). u∗ is matched in σ ′ and w (σ ′,p) = w (σ ,p) < w (σ ,u).
By Claim 3.1, u∗ is matched in σ ′ to some node v such that w (σ ′,v ) ≥ w (σ ,u). Observe that

(σ ′,v ) is graceful, and we include (σ ′,v ) ∈ Y in f (σ ,u).
Case 2(a). u∗ is unmatched in σ ′, and p∗ (if it exists) is also matched in σ ′.
Note that after promoting u, we have w (σ ′,u) ≥ w (σ ,u). Moreover, (σ ′,u) is graceful, because

the optimal partner p∗ either does not exist or is matched in σ ′. We include (σ ′,u) ∈ Y in f (σ ,u).
Case 2(b). u∗ is unmatched in σ ′, and p∗ exists and is the only unmatched neighbor of p in σ ′.
By Claim 3.1, since u∗ is unmatched in σ ′, we have w (σ ,p) = w (σ ′,p) ≥ w (σ ,u); also, since p

is matched in σ ′, p � u∗. Moreover, by Lemma 3.5, the symmetric difference M (σ ) ⊕ M (σ ′) is an
alternating path, and only two nodes (u and u∗) can have different matching status in σ and σ ′.

Hence, in σ , p must remain matched and p∗ must remain unmatched; this means that p has
exactly two unmatched neighbors, namely u and p∗, in σ . By Lemma 3.6, we conclude that (σ ,p)
is perpetual, and we include (σ ,p) ∈ Z in д(σ ,u).

Case 2(c). u∗ is unmatched in σ ′, p∗ exists and is not the only unmatched neighbor of p in σ ′.
Similar to Case 2(b), in this case,w (σ ′,p) = w (σ ,p) ≥ w (σ ,u) andp has two different unmatched

neighbors in σ ′, so (σ ′,p) is perpetual by Lemma 3.6. We include (σ ′,p) ∈ Z in д(σ ,u).
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By construction, property 1 holds. Moreover, for each 1 ≤ j < σ (u) and σ ′ = σ j
u , exactly one of

the above 5 cases happens. Hence, we also have property 2: | f (σ ,u) | + |д(σ ,u) | = σ (u) − 1. Next,
we prove the injectivity.

Injectivity Analysis. Observe that in our construction, if (ρ,v ) ∈ f (σ ,u) ∪ д(σ ,u), then σ = ρt
u ,

where t is the marginal position of (ρ,u). Hence, in the injectivity analysis, once (ρ,v ) and u are
identified, σ can be uniquely determined.

For relation f , suppose (ρ,v ) ∈ Y is included in some f (σ ,u) in the following cases:
Case 1(a). Node u is uniquely identified as the current partner of v in ρ.
Case 1(b). Node u is uniquely identified as the optimal partner of v’s current partner.
Case 2(a). Node u is the same as v .
Hence, each (ρ,v ) ∈ Y is related to at most three instances in S , which means that f has injec-

tivity at most 3.
For relation д, suppose (ρ,v ) ∈ Z is included in some д(σ ,u) in the following cases.
Case 2(b). By construction ρ = σ , and v has exactly two neighbors that are unmatched in ρ,

one of which is v∗. Node u is uniquely identified as the other unmatched neighbor.
Case 2(c). Node u is uniquely identified as the current partner of v in ρ.
Hence, each (ρ,v ) ∈ Z is related to at most two instances in S , which means thatд has injectivity

at most 2. This completes the proof of Lemma 3.8.

We can now derive the main constraint of this subsection.

Proof of Lemma 3.2: We start from the inequality in Lemma 3.7. Observing that zi = xm , and
using the upper bound for 1

m

∑m
i=1ψ (i )yi in Lemma 3.8, we have

1

m

m∑
i=1

(i − 1)ψ (i )αi ≤
1

m

m∑
i=1

ψ (i ) (6xi + 2xm − 3).

We next use Lemma 2.3 by setting bi := ψ (i ) and ci := i − 1; observe that c1 = 0, and we set
ψ (m + 1) := 0, which is consistent withψ (m) ≥ 0 = ψ (m + 1). Hence, we have the following lower
bound for the LHS:

1

m

m∑
i=1

(i − 1)ψ (i )αi ≥
1

m

m∑
i=1

(ψ (i ) + i (ψ (i + 1) −ψ (i ))) · xi .

Rearranging gives the required inequality. �

3.3 Using LP to Bound Performance Ratio

Putting all achieved constraints on xi ’s together, we obtain the following linear program LP
ψ
m ,

which is a lower bound on the performance ratio when weighted Ranking is run with weight
adjustment functionψ and sample space Ωm = [m]V :

LP
ψ
m min 1

m

∑m
i=1 xi

s.t. xi − xi+1 ≥ 0, i ∈ [m − 1]

2
m

∑m
i=1ψ (i ) · xm +

1
m

∑m
i=1[5ψ (i ) − i (ψ (i + 1) −ψ (i ))] · xi ≥ 3

m

∑m
i=1ψ (i ) (5)

1
m

∑m
i=1[2ψ (i ) + (m − i ) (ψ (i ) −ψ (i + 1))]xi ≥ ψ (1) (6)

xi ≥ 0, i ∈ [m].

Achieving Ratio Strictly Larger than 0.5. Observe that LP
ψ
m is independent of the size ofG. Hence,

to obtain a lower bound on the ratio, we can use an LP solver to solve LP
ψ
m for some large enoughm
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12:12 T.-H. H. Chan et al.

and some appropriate non-negative non-increasing sequence {ψ (i )}mi=1. In particular, there exists
a weighted Ranking algorithm with ratio strictly above 0.5.

Theorem 3.9. Usingm = 10, 000 andψ (i ) := 1 − e
17i
m −1

e17−1
, the weighted Ranking algorithm has per-

formance ratio at least the value given by LP
ψ
m : 0.501505.

Although the function φ (t ) := 1 − et−1 (that is used in Aggarwal et al. (2011) and Devanur et al.
(2013)) cannot give a ratio better 0.5 from our LP, it is still possible that the function could have
good performance ratio. More experimental results and our source code can be downloaded at
http://i.cs.hku.hk/∼algth/project/online_matching/weighted.html.

Limiting Case When m Tends to Infinity. Experiments show that LP
ψ
m is increasing in m. This

suggests that a (slightly) better analysis may be achieved if Ranking samples σ from the continuous
space Ω∞ = [0, 1]V and uses adjusted weight w (σ ,u) := φ (σ (u)) ·wu for each node u.

The variables xi ’s are replaced by the function z (t ) :=
∑

u∈V Prσ [(σ ,u ) is good |σ (u )=t ]·wu

w (OPT) . Our com-

binatorial counting argument can be replaced by measure analysis. For instance, Ω∞ = [0, 1]V is
equipped with the uniform n-dimensional measure, while z (t ) has measure of dimension n − 1.
Since we assume thatψ (m + 1) = 0 in the finite analysis, this corresponds to φ (1) = 0 in continu-
ous case.

Observe that it is possible to describe a continuous version of the weighting principle using mea-
sure theory to derive all the corresponding constraints involving z. However, the formal rigorous
proof is out of the scope of this article, and one can intuitively see that each constraint involving
the xi ’s translates naturally to a constraint involving z in the limiting case. Hence, the following
continuous LP

φ
∞ gives a lower bound on the ratio when Ranking samples continuously, and we

analyze it in Section 5.2 as a case study:

LP
φ
∞ min

∫ 1

0
z (t )dt

s.t. z ′(t ) ≤ 0 ∀t ∈ [0, 1]

2Φ · z (1) +
∫ 1

0
[5φ (t ) − tφ ′(t )] z (t )dt ≥ 3Φ∫ 1

0
[2φ (t ) − (1 − t )φ ′(t )] z (t )dt ≥ φ (0)

z (t ) ≥ 0 ∀t ∈ [0, 1]

Φ =
∫ 1

0
φ (t )dt .

4 IMPROVED LP FOR UNWEIGHTED CASE

We show in this section that the technique of keeping track of when both a node and its optimal
partner are both matched (Poloczek and Szegedy 2012; Goel and Tripathi 2012) can be applied
to unweighted Oblivious Matching Problem on general graphs to improve the analysis of the
previously best ratio of 0.523 in Chan et al. (2014).

In the unweighted case, the notation is simpler as in Chan et al. (2014). The sample space Ω
is the set of all permutations on V , and Ranking simply samples bijection σ : V → [n] uniformly
at random from Ω to obtain a permutation on nodes to derive the lexicographical order on node

pairs. For a permutation σ , let σ j
u be the permutation obtained by moving u to position j while

keeping the relative order of other nodes unchanged.
As in Poloczek and Szegedy (2012, Corollary 2), without loss of generality, we can assume that

the optimal matching in the graph G = (V ,E) matches all nodes in V . For each i ∈ [n], events are
defined similarly.
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Definition 4.1 (Qi ,Ri ,Yi ,Zi , Si ). We define the following events:

—rank-i good event: Qi = {(σ ,u) |σ (u) = i and u is matched in σ };
—rank-i bad event: Ri = {(σ ,u) |σ (u) = i,u is not matched in σ };
—rank-i extra good event: Yi = {(σ ,u) ∈ Qi |(σ ,u∗) ∈ Q };
—rank-i perpetual event Zi = {(σ ,u) ∈ Qi |(σn

u ,u) ∈ Qn };
—rank-i marginally bad event: Si = {(σ ,u) ∈ Ri |(σ i−1

u ,u) ∈ Qi−1}.

Let Q = ∪n
i=1Qi , R = ∪n

i=1Ri , Y = ∪n
i=1Yi , Z = ∪n

i=1Zi and S = ∪n
i=1Si .

For each i ∈ [n], the variables are defined: xi =
|Qi |
n! ,yi =

|Yi |
n! , zi =

|Zi |
n! , and αi =

|Si |
n! . Moreover,

under the perfect matching assumption, it is not hard to derive the following equalities (let x0 = 1):

x1 = 1, 1 − xi =
|Ri |
n! , zi = xn , and αi = xi−1 − xi for all i ∈ [n].

Note that at least one of u and u∗ must be matched in any permutation σ . Hence, the number of
nodes matched in each permutation σ is at least n

2 . Hence, instances in Y is the “extra gain” above
the trivial performance ratio 0.5. A simple counting analysis yields the following lemma.

Lemma 4.2 (Extra Gain). The performance ratio is 1
n

∑n
i=1 xi =

1
2 +

1
2n

∑n
i=1 yi .

Lemma 4.3 (Evolving Constraints (Chan et al. 2014)). For all i ∈ [n], we have (1 − i−1
n

)xi +
2
n

∑i−1
j=1 x j ≥ 1.

Next, we show a lemma very similar to Lemma 3.8 that provides a lower bound for the extra
gain.

Lemma 4.4 (Mixed Constraints). For all i ∈ [n], we have i
n
· xn +

i
n
· xi +

1
n

∑i
j=1 (−x j + 2yj ) ≥

0.

Proof. The inequality is trivial when i = 1. For i ≥ 2, similar to the proof of Lemma 3.8, it
suffices to construct a relation f from ∪i

j=1S j to ∪i
j=1Yj , and a relation д from ∪i

j=1S j to ∪i
j=1Z j

such that the following properties hold.

1. For each (σ ,u) ∈ S j , | f (σ ,u) | + |д(σ ,u) | = j − 1.
2. The injectivity of f is at most 2 and the injectivity of д is at most 1.

Suppose we have those two relations, then immediately we have
∑i

j=1 (j − 1) |S j | ≤
∑i

j=1 (2|Yj | +
|Z j |). Observing that zi = xn , dividing the both sides by n! gives

i∑
j=1

(j − 1) (x j−1 − x j ) ≤
i∑

j=1

(2yj + xn ),

from which the required inequality can be obtained.
Next, we show how f and д are constructed. Given marginally bad (σ ,u) ∈ S j , where j ≤ i , we

consider the good instance (σ ′,u) ∈ Q , where σ ′ = σk
u ,k < j.

From Fact 2.1, note that u∗ must be matched in σ to some node v such that σ (v ) < σ (u) (other-
wiseu will be considered first). We include instances in ∪i

j=1Yj into f (σ ,u) and instances in ∪i
j=1Z j

into д(σ ,u) as follows.
Case 1.u∗ is matched in σ ′. Observe that bothu andu∗ are matched in σ ′, and σ ′(u) ≤ i . Hence,

we include extra good (σ ′,u) ∈ ∪i
j=1Yj in f (σ ,u)

Case 2. u∗ is unmatched in σ ′ and v∗ is matched in σ ′. Since u∗ is unmatched, we know that v
must be matched in this case. Since v∗ is also matched and σ ′(v ) ≤ σ (v ) + 1 < σ (u) + 1 = j + 1 ≤
i + 1, we include extra good (σ ′,v ) ∈ ∪i

j=1Yj in f (σ ,u).
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Case 3. u∗ is unmatched in σ ′ and v∗ is also unmatched in σ ′. Since v has two different un-
matched neighbors inσ ′ in this case, (σ ′,v ) is perpetual by Lemma 3.6. We include (σ ′,v ) ∈ ∪i

j=1Z j

in д(σ ,u).
Observe that for each k < j, we have σ ′ = σk

u , and exactly 1 of the 3 cases happens. Hence, for
(σ ,u) ∈ S j , | f (σ ,u) | + |д(σ ,u) | = j − 1, and so the first property holds.

Injectivity Analysis. We shall verify that each good instance (σ ′,v ) can be included by a unique
marginally bad instance (σ ,u) for each case. Observe that if u can be identified, then σ can be
recovered from σ ′ by moving u to its marginal position in (σ ′,u).

Case 1. If (σ ′,v ) ∈ ∪i
j=1Yj is included in Case 1 by marginal bad (σ ,u), then u is uniquely iden-

tified as v .
Cases 2 and 3. Note that if a good instance (σ ′,v ) is included by Case 2 or 3 because of some

marginally bad (σ ,u), then (σ ,u) can be recovered using (Chan et al. 2014, Lemma 3.3 R(6)). For
completeness, we give an alternative analysis here.

By Lemma 3.5, since u∗ is unmatched in σ ′, the symmetric difference M (σ ′) ⊕ M (σ ) is an alter-
nating path P that starts at u and the last three nodes on the path arew ,v and u∗, where nodew is
the partner of v in σ ′. Recall that in the proof of Lemma 3.5, running Ranking with σ ′ on Gu with
node u marked as unavailable is equivalent to running with σ . When we compare running σ ′ on
G andGu , at any moment, exactly one node on path P is crucial; i.e., it has different availability in
G andGu . Consider the round in which nodew is crucial, and the pair {w,v} is about to be probed.
Node w is matched in Gu , while unmatched in G. At this moment, if we also make w unavailable
in G, then the edges included after this point will be the same in both G and Gu ; in particular, v
will be matched to u∗ if we mark w as unavailable in G. Therefore, if we mark the current partner
w of v in σ ′ as unavailable, and still use the same probing order as given by σ ′, v will be matched
to u∗. Hence, we can recover u∗ and uniquely identify u.

Therefore, as in the proof of Lemma 3.8, we conclude that the injectivity of f is at most 2 and
the injectivity of д is at most 1. This completes the proof of Lemma 4.4. �

Putting all achieved constraints on xi ’s together, we achieve the following linear program LPU
n ,

whose optimal value is a lower bound for the performance ratio for Ranking when the input graph
has n nodes. To express the LP in a convenient form, we have relaxed the equality in Lemma 4.2
to an inequality:

LPU
n min 1

n

∑n
i=1 xi

s.t. xi − xi+1 ≥ 0 i ∈ [n − 1](
1 − i−1

n

)
xi +

2
n

∑i−1
j=1 x j ≥ 1 i ∈ [n]

i
n
· xn +

i
n
· xi +

1
n

∑i
j=1 (−x j + 2yj ) ≥ 0 i ∈ [n]

1
n

∑n
i=1 (2xi − yi ) ≥ 1

xi ,yi ≥ 0 i ∈ [n].

As in Chan et al. (2014), the value of LPU
n decreases as n increases. Hence, to give a lower bound

on the performance ratio of Ranking, we use continuous LP to analyze the limiting behavior in
Section 5.3.

5 ANALYZING FINITE LP VIA A GENERAL CLASS OF CONTINUOUS LP

In this section, we analyze the finite LPs constructed in Sections 3 and 4 via continuous LP to give
lower bounds on the performance ratios of (weighted and unweighted) Ranking.
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We formulate a general class of continuous LP, and develop new duality and complementary
slackness characterization that can capture both the weighted and the unweighted cases. Unlike
the previous framework in Chan et al. (2014), the functions in the new framework do not have to be
continuous everywhere. As inspired from the optimal solutions from our finite LPs, the continuity
requirement is weakened such that in the primal LP, there is a component of the function that is
monotone and can be allowed to have jump discontinuities. However, as we shall see later, other
components of the function may take unconventional form such as the Dirac δ function.

For both the weighted and unweighted cases, we construct dual feasible solutions, the objective
values of which give corresponding lower bounds on the performance ratios.

5.1 Primal-Dual for a New Class of Continuous LP

Tyndall (1965) and Levinson (1966) formulated a class of continuous LP that can handle the evolv-
ing constraint. In previous work (Chan et al. 2014), a class of continuous LP was developed to
handle the monotonicity and the boundary constraint. In this article, we study a new class of con-
tinuous linear program CP with a unified constraint that incorporates both evolving and boundary
constraints; in particular, it includes the continuous LPs for Ranking as special cases.

Primal. Suppose m,k , and n are positive integers. By default a vector is considered as a column
vector. Let P ∈ Rk×n be a matrix. Let z : [0, 1]→ Rn be a measurable primal function variable such
that

(i) Pz is continuous except at a finite number of jump discontinuities in [0, 1];
(ii) Pz is non-decreasing in [0, 1]; and

(iii) Pz is differentiable almost everywhere in [0, 1].

Let B,E, F : [0, 1]→ Rm×n be measurable functions. LetA ∈ Rn , K ∈ Rk , D ∈ Rm×n andC ∈ Rm

be constants. In the rest of this article, we use “∀t” to denote “for almost all t ,” which means for
all but a measure zero set. The primal LP is

CP min p (z) =
∫ 1

0
AT z (t )dt

s.t. Pz ′(t ) ≥ 0 ∀t ∈ [0, 1] (7)

Pz (0) = K (8)

E (t )z (1) + B (t )z (t ) +
∫ 1

0
F (s )z (s )ds +

∫ t

0
Dz (s )ds ≥ C ∀t ∈ [0, 1] (9)

z (t ) ≥ 0 ∀t ∈ [0, 1].

Remark. The continuous LPs that we encounter in this article do not have a constraint of the
form of Equation (8). However, we include it here to be compatible with the continuous LP frame-
work developed in Chan et al. (2014). We shall describe how the existence of constraint Equation (8)
will affect the form of the dual.

Dual. Let ζ : [0, 1]→ Rk and w : [0, 1]→ Rm be measurable dual function variables such that
ζ is continuous in [0, 1] and differentiable almost everywhere in [0, 1]. To satisfy weak duality
with the primal, if there is no constraint Equation (8) in CP, then we require constraint Equa-
tion (10) to appear in the following dual LP (which means the termKT ζ (0) in the objective function
vanishes):

CD max d (ζ ,w ) = KT ζ (0) +
∫ 1

0
CTw (t )dt

s.t. ζ (0) = 0 (10)
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PT ζ (1) +
∫ 1

0
ET (t )w (t )dt ≤ 0 (11)

−PT ζ ′(t ) + BT (t )w (t ) + FT (t )
∫ 1

0
w (s )ds +

∫ 1

t
DTw (s )ds ≤ A ∀t ∈ [0, 1] (12)

ζ (t ),w (t ) ≥ 0 ∀t ∈ [0, 1].

For vectors u = (u1, . . . ,un )T and v = (v1, . . . ,vn )T , denote the point-wise product of u and v
by u ◦v := (u1v1, . . . ,unvn )T . We have the following result for CP and CD.

Lemma 5.1 (Weak Duality and Complementary Slackness). Suppose z and (ζ ,w ) are feasible

primal and dual solutions, respectively. Then, d (ζ ,w ) ≤ p (z). Moreover, suppose z and (ζ ,w ) satisfy

the following complementary slackness conditions ∀t ∈ [0, 1]: [
Pz ′(t )

] ◦ ζ (t ) = 0, (13)[
E (t )z (1) + B (t )z (t ) +

∫ 1

0
F (s )z (s )ds +

∫ t

0
Dz (s )ds −C

]
◦w (t ) = 0, (14)[

−PT ζ ′(t ) + BT (t )w (t ) + FT (t )
∫ 1

0
w (s )ds +

∫ 1

t
DTw (s )ds −A

]
◦ z (t ) = 0, (15)[

PT ζ (1) +
∫ 1

0
ET (t )w (t )dt

]
◦ z (1) = 0, (16)

and if in addition z has a discontinuity at

μ ∈ [0, 1], ζ (μ ) = 0. (17)

Then, z and (ζ ,w ) are optimal to CP and CD, respectively, and achieve the same optimal value;

conversely, if d (ζ ,w ) = p (z), then the complementary slackness conditions hold.

Proof. To prove d (ζ ,w ) ≤ p (z), by Equation (9), we have

d (ζ ,w ) = KT ζ (0) +
∫ 1

0
CTw (t )dt

≤ KT ζ (0) +
∫ 1

0
[E (t )z (1) + B (t )z (t ) +

∫ 1

0
F (s )z (s )ds +

∫ t

0
Dz (s )ds]Tw (t )dt

= KT ζ (0) +
∫ 1

0
[BT (t )w (t ) + FT (t )

∫ 1

0
w (s )ds +

∫ 1

t
DTw (s )ds]T z (t )dt + [

∫ 1

0
ET (t )w (t )dt]T z (1),

where in the last step we change the order of integration by using Tonelli’s Theorem on measurable

function д:
∫ 1

0

∫ t

0
д(t , s )dsdt =

∫ 1

0

∫ 1

t
д(s, t )dsdt . Using Equation (12), we obtain

d (ζ ,w ) ≤ KT ζ (0) +
∫ 1

0
[A + PT ζ ′(t )]T z (t )dt + [

∫ 1

0
ET (t )w (t )dt]T z (1)

= KT ζ (0) +
∫ 1

0
AT z (t )dt +

∫ 1

0
(PT ζ ′(t ))T z (t )dt + [

∫ 1

0
ET (t )w (t )dt]T z (1).

Recall that ζ is continuous in [0, 1], while Pz is continuous except at a finite number of jump discon-
tinuities in [0, 1]. Let μ1, μ2, . . . , μK be the jump discontinuities of Pz. Since Pz is non-decreasing
by definition, we have Pz (μ−

k
) ≤ Pz (μ+

k
) for 1 ≤ k ≤ K . Let μ0 := 0 and μK+1 := 1. Using integra-

tion by parts and the Fundamental Theorem of Calculus on the intervals separated by the jump
discontinuities, we obtain∫ 1

0
(PT ζ ′(t ))T z (t )dt

=
∑K

k=0

∫ μk+1

μk
d
[
(Pz (t ))T ζ (t )

]
−
∫ 1

0
(Pz ′(t ))T ζ (t )dt

=
∑K

k=0

[
(Pz (μ−

k+1
))T ζ (μk+1) − (Pz (μ+

k
))T ζ (μk )

]
−
∫ 1

0
(Pz ′(t ))T ζ (t )dt

= (Pz (1))T ζ (1) +
∑K

k=1

[
Pz (μ−

k
) − Pz (μ+

k
)
]
ζ (μk ) − (Pz (0))T ζ (0) −

∫ 1

0
(Pz ′(t ))T ζ (t )dt

≤ (PT ζ (1))T z (1) − (PT ζ (0))T z (0) −
∫ 1

0
(Pz ′(t ))T ζ (t )dt .
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Substituting
∫ 1

0
(PT ζ ′(t ))T z (t )dt with the above expression, we have

d (ζ ,w ) ≤ KT ζ (0) +
∫ 1

0
AT z (t )dt + (PT ζ (1))T z (1) − (PT ζ (0))T z (0)

−
∫ 1

0
(Pz ′(t ))T ζ (t )dt + [

∫ 1

0
ET (t )w (t )dt]T z (1)

≤ [K − Pz (0)]T ζ (0) +
∫ 1

0
AT z (t )dt + [PT ζ (1) +

∫ 1

0
ET (t )w (t )dt]T z (1)

=
∫ 1

0
AT z (t )dt + [PT ζ (1) +

∫ 1

0
ET (t )w (t )dt]T z (1)

≤
∫ 1

0
AT z (t )dt

= p (z),

where the second inequality follows from Equation (7), the first equality from Equation (10)
(or Equation (8) if it exists), and the last inequality from Equation (11). In conclusion, we have
d (ζ ,w ) ≤ p (z). Moreover, if z and (ζ ,w ) satisfy conditions Equation (13)–(17), then all the in-
equalities above hold with equality. Hence, d (ζ ,w ) = p (z); so z and (ζ ,w ) are optimal for CP and
CD, respectively.

Conversely, if d (ζ ,w ) = p (z), then all the inequalities above must hold with equality, which
implies that the complementary conditions are all satisfied.

5.2 Performance Ratio of Ranking for the Weighted Case

Recall that in Section 3 we obtained LP
φ
∞ as a continuous counterpart for the discrete LP

ψ
m . We

now derive LP
φ
∞ and LD

φ
∞ from CP (without constraint Equation (8)) and CD, respectively, where

the optimal value of LP
φ
∞ gives a lower bound for the performance ratio of weighted Ranking (that

uses the continuous sample space Ω = [0, 1]V ). Let m = 2, n = 1 and k = 1. Set the coefficients as
follows:

A = 1, P = −1,B (t ) =

[
0
0

]
,D (t ) =

[
0
0

]
,E (t ) =

[
2Φ
0

]
,

F (t ) =

[
5φ (t ) − tφ ′(t )

2φ (t ) − (1 − t )φ ′(t )

]
,C =

[
3Φ
φ (0)

]
.

Let z be the primal function variable, and we recover the primal LP:

LP
φ
∞ min

∫ 1

0
z (t )dt

s.t. z ′(t ) ≤ 0 ∀t ∈ [0, 1]

2Φ · z (1) +
∫ 1

0
[5φ (t ) − tφ ′(t )]z (t )dt ≥ 3Φ (18)

∫ 1

0
[2φ (t ) − (1 − t )φ ′(t )]z (t )dt ≥ φ (0) (19)

z (t ) ≥ 0 ∀t ∈ [0, 1]

Φ =
∫ 1

0
φ (t )dt .

Let ζ andw = (w1,w2) be the dual variables, where ζ is continuous in [0, 1] and differentiable al-

most everywhere in [0, 1]. Note thatw1 andw2 appear only in the form
∫ 1

0
w1 (t )dt and

∫ 1

0
w2 (t )dt .

Therefore, we can replace
∫ 1

0
w1 (t )dt and

∫ 1

0
w2 (t )dt by real numbersw1 andw2, respectively. The
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dual LP is as follows:

LD
φ
∞ max 3Φ ·w1 + φ (0) ·w2

s.t. ζ (0) = 0

−ζ (1) + 2Φ ·w1 ≤ 0 (20)

ζ ′(t ) + [5φ (t ) − tφ ′(t )]w1 + [2φ (t ) − (1 − t )φ ′(t )]w2 ≤ 1 ∀t ∈ [0, 1] (21)

ζ (t ),w1,w2 ≥ 0 ∀t ∈ [0, 1]

Φ =
∫ 1

0
φ (t )dt .

We discuss a procedure for constructing a pair of primal feasible solution z and dual feasible
solution (ζ ,w1,w2) that are “nearly” optimal, where z has a jump discontinuity μ ∈ [0, 1]. The
complementary slackness condition ζ (μ ) = 0 can only be checked experimentally, as the closed
forms for these solutions could not be found. However, since the primal and the dual objective
values are close, we can conclude that both are nearly optimal by Lemma 5.1.

Constructing Primal Feasible Solution z. Experiments suggest that the optimal primal has the
following form. Let a > b ≥ 0 be real numbers. Moreover, z has a jump discontinuity μ. Define

z (t ) =

{
a, 0 ≤ t ≤ μ
b, μ < t ≤ 1.

Then, we have
∫ 1

0
z (t )dt = aμ + b (1 − μ ). Let Φμ =

∫ μ

0
φ (t )dt . Observe the following:

∫ 1

0
φ (t )z (t )dt = aΦμ + b (Φ − Φμ ),∫ 1

0
φ ′(t )z (t )dt = a(φ (μ ) − 1) + b (φ (1) − φ (0) − φ (μ ) + 1),∫ 1

0
tφ ′(t )z (t )dt = a(μφ (μ ) − Φμ ) + b (φ (1) − Φ − μφ (μ ) + Φμ ).

For z to be optimal in LP
φ
∞, the constraint Equations (18) and (19) should hold with equality. Hence,

LP
φ
∞ can be rewritten as

min aμ + b (1 − μ )

s.t. (6Φμ − μφ (μ ))a + (8Φ − 6Φμ + μφ (μ ) − φ (1))b = 3Φ

(Φμ + μφ (μ ) − φ (μ ) + 1)a + (Φ − Φμ − μφ (μ ) + φ (μ ) + φ (0) − 1)b = φ (0).

By solving the equality constraints as a linear system with respect to a and b and applying sub-
stitution to aμ + b (1 − μ ), we can obtain a minimization problem on a function of μ. Setting

φ (t ) := 1 − e17t−1
e17−1

for t ∈ [0, 1], and running experiments on this problem (with precision 1 × 10−6),
we conclude that the function achieves minimum value at μ ≈ 0.895033, where a ≈ 0.547528,
b ≈ 0.109144, and aμ + b (1 − μ ) ≈ 0.501512. Note that the function z defined by a, b and the jump
discontinuity μ is feasible in LP

φ
∞. Hence, z achieves a value of 0.501512 for LP

φ
∞.

Constructing the Dual Feasible Solution (ζ ,w1,w2). We first observe that for (ζ ,w1,w2) to be
optimal in LD

φ
∞, the constraint Equations (20) and (21) should hold with equality. Hence, we obtain

ζ (1) = 2Φ ·w1, (22)

ζ ′(t ) = 1 − [5φ (t ) − tφ ′(t )] w1 −
[
2φ (t ) − (1 − t )φ ′(t )] w2. (23)
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Taking integral on both sides of Equation (23) and using ζ (0) = 0, we have

ζ (t ) = t −
[
6
∫ t

0
φ (s )ds − tφ (t )

]
w1 −

[∫ t

0
φ (s )ds − (1 − t )φ (t ) + φ (0)

]
w2

= t + (w1t +w2 (1 − t ))φ (t ) − (6w1 +w2)
∫ t

0
φ (s )ds −w2φ (0). (24)

Note that given φ, the function ζ is defined by the above equation in terms of t ,w1, andw2. Setting
t = 1, we have

ζ (1) = 1 − (6Φ − φ (1))w1 − (Φ + φ (0))w2. (25)

Combining Equations (22) and (25), we get

(8Φ − φ (1))w1 + (Φ + φ (0))w2 = 1. (26)

We observe that for any w1,w2 ≥ 0 satisfying Equation (26), the function ζ determined by Equa-
tion (24) satisfies Equation (25), and hence Equations (22) and (23) also hold.

Therefore, to show that (ζ ,w1,w2) is feasible in LD
φ
∞, it remains to check that ζ ≥ 0. Recall that

LD
φ
∞ has an objective function in terms of w1 and w2, which by Equation (26) can be rewritten as

3Φ ·w1 + φ (0) ·w2 =
φ (0)

Φ+φ (0) −
(

8Φ−φ (1)
Φ+φ (0) − 3Φ

)
w1.

Set φ (t ) := 1 − e17t−1
e17−1

for t ∈ [0, 1]. Then it can be checked that
8Φ−φ (1)
Φ+φ (0) − 3Φ ≥ 0. Hence, the objec-

tive function is decreasing with respect to w1. On the other hand, the function ζ defined by Equa-
tion (24) may be negative whenw1 is too small. Letw1 be the minimum value such that (substituting
w2 using Equation (26))

ζ (t ) = t +
[
w1t +

1−(8Φ−φ (1))w1

Φ+φ (0) (1 − t )
]
φ (t ) −

[
6w1 +

1−(8Φ−φ (1))w1

Φ+φ (0)

] ∫ t

0
φ (s )ds

− 1 − (8Φ − φ (1))w1

Φ + φ (0)
φ (0) ≥ 0,

for all t ∈ [0, 1]. Running experiments on this minimization problem (with precision 1 × 10−6),
we obtain w1 ≈ 0.0129253, and hence w2 ≈ 0.465017 by Equation (26). Moreover, we check that ζ
is non-negative at the local minimum t0 ≈ 0.895033. The objective function 3Φ ·w1 + φ (0) ·w2 ≈
0.501512. Therefore, we achieve a dual feasible solution (ζ ,w1,w2) with objective value at least
0.501512. Since the primal and the dual solutions have very close values, we conclude that both
are nearly optimal.

Remark on Complementary Slackness. It can be easily checked that the primal and dual solutions
we construct above satisfy all the complementary slackness conditions, where the last one ζ (μ ) = 0
we can verify empirically. From experiments the dual ζ achieves value zero at t0 ≈ 0.895033, which
is the same (with precision 1 × 10−6) as the jump discontinuity μ of the primal z (Figure 1).

Proof of Theorem 1.2: By using the procedure described above, we can construct a dual feasible

solution (ζ ,w1,w2) to LD
φ
∞ that achieves objective value 0.501512 when φ (t ) = 1 − e17t−1

e17−1
for t ∈

[0, 1]. By Lemma 5.1 the performance ratio of weighted Ranking is at least 0.501512. �

5.3 Performance Ratio of Ranking for the Unweighted Case

We first derive LPU
∞ and LDU

∞ from CP (without constraint Equation (8)) and CD, respectively,
where LPU

∞ serves as a continuous counterpart for the discrete LPU
n for unweighted Ranking.
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Fig. 1. Primal z and Dual ζ .

Letm = 3, n = 2, and k = 1. Set the coefficients as follows:

A =

[
1
0

]
, P =

[
−1 0

]
,

E (t ) =

⎡⎢⎢⎢⎢⎢⎣
0 0
t 0
0 0

⎤⎥⎥⎥⎥⎥⎦ ,B (t ) =

⎡⎢⎢⎢⎢⎢⎣
(1 − t ) 0

t 0
0 0

⎤⎥⎥⎥⎥⎥⎦ , F (t ) =

⎡⎢⎢⎢⎢⎢⎣
0 0
0 0
2 −1

⎤⎥⎥⎥⎥⎥⎦ ,D =
⎡⎢⎢⎢⎢⎢⎣

2 0
−1 2
0 0

⎤⎥⎥⎥⎥⎥⎦ ,C =
⎡⎢⎢⎢⎢⎢⎣

1
0
1

⎤⎥⎥⎥⎥⎥⎦ .
Let z = (α , β ) be the primal variable. Observe the monotone and continuity assumptions apply

to only α ; moreover, since β appears only within an integral in the following primal LP, it may
take unconventional form such as the Dirac δ function:

LPU
∞ min

∫ 1

0
α (t )dt

s.t. α ′(t ) ≤ 0 ∀t ∈ [0, 1] (27)

(1 − t )α (t ) + 2
∫ t

0
α (s )ds ≥ 1 ∀t ∈ [0, 1] (28)

t · α (1) + t · α (t ) +
∫ t

0
[−α (s ) + 2β (s )]ds ≥ 0 ∀t ∈ [0, 1] (29)∫ 1

0
[2α (s ) − β (s )]ds ≥ 1 (30)

α (t ), β (t ) ≥ 0 ∀t ∈ [0, 1].

Let ζ and w = (ξ ,η,γ ) be the dual variables where ζ is continuous in [0, 1] and differentiable

almost everywhere in [0, 1]. Note that γ appears only in the form
∫ 1

0
γ (t )dt . Therefore, we can

replace
∫ 1

0
γ (t )dt by a real number γ . The dual LP is as follows:

LDU
∞ max −ζ (0) +

∫ 1

0
ξ (t )dt + γ

s.t. ζ (0) = 0 (31)

−ζ (1) +
∫ 1

0
tη(t )dt ≤ 0 (32)

ζ ′(t ) + [(1 − t )ξ (t ) + tη(t )] + 2γ +
∫ 1

t
[2ξ (s ) − η(s )]ds ≤ 1 ∀t ∈ [0, 1] (33)

−γ + 2
∫ 1

t
η(s )ds ≤ 0 ∀t ∈ [0, 1] (34)

ζ (t ), ξ (t ),η(t ),γ ≥ 0 ∀t ∈ [0, 1].
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Lower Bounding the Ratio of Ranking via LPU
∞. Before we discuss how to compute the optimal

value p∞ of LPU
∞, we would like to show that LPU

∞ indeed gives a lower bound on the performance
ratio of unweighted Ranking. Since we already know that the performance ratio on a graph with n
nodes is at least the optimal valuepn of LPU

n , it suffices to show thatpn ≥ p∞ for alln. A simple idea
is to consider a feasible solution for LPU

n , and convert it into the corresponding step function that
is feasible in LPU

∞. However, we find that it is not straightforward to convert the step function into
a feasible solution in LPU

∞, and we instead show a weaker result (p∞ ≤ pn +
1
n

), which is sufficient
for our purpose.

Lemma 5.2 (Relating p∞ and pn ). For all n ∈ Z+, we have p∞ ≤ pn +
1
n

.

Proof. Let (x ,y) be an optimal solution to LPU
n . Our goal is using (x ,y) to construct a feasible

solution (α , β ) to LPU
∞ that has an objective value at most pn +

1
n

. Recall that to form a feasible

solution to LPU
∞ the function α should be continuous except at a finite number of jump discontinu-

ities in [0, 1]. Define the step function α with jump discontinuities { i−1
n

: 2 ≤ i ≤ n, i ∈ Z} in [0, 1]

as follows: α (0) := x1 +
1
n

; and α (t ) := xi +
1
n

for t ∈ ( i−1
n
, i

n
] and 1 ≤ i ≤ n. On the other hand, we

note that β appears only within integrals in LPU
∞; hence, we only need β to be non-negative and

integrable. As we shall see later, we would require
∫ t

0
β (s )ds to be sufficiently large even for small

t > 0. Therefore, it will be convenient for β to take the form of a Dirac δ function δu , which can
be viewed as a distribution with mass concentrated at a single point u ∈ R:

δu (t ) =

{
+∞, t = u
0, t � u and

∫ +∞
−∞ δu (t )dt = 1.

For our purpose, we can assign β (t ) := ( 1
n

∑n
i=1 yi +

1
n

) · δ0 (t ), where all the mass is concentrated
at t = 0.

It can be checked that the weak duality shown in Lemma 5.1 still holds for this generalized
function variable β with other appropriate variables. Then, the objective value of (α , β ) is

∫ 1

0

α (t )dt =
n∑

i=1

∫ i
n

i−1
n

α (t )dt =
1

n

n∑
i=1

(
xi +

1

n

)
= pn +

1

n
.

It remains to prove that (α , β ) is feasible to LPU
∞, i.e., it satisfies the constraints Equations (27)–

(30) of LPU
∞. Clearly α ′(t ) ≤ 0 for t ∈ [0, 1] \ { i

n
: 0 ≤ i ≤ n, i ∈ Z}. Hence, Equation (27) is satisfied.

To check Equations (28)–(30), we fix t ∈ (0, 1] and let i be the integer such that t ∈ ( i−1
n
, i

n
].

Then, α (t ) = xi +
1
n

. Also, observe that
∫ t

0
α (s )ds = 1

n

∑i−1
j=1 x j + (t − i−1

n
)xi +

t
n

and
∫ t

0
β (s )ds =

1
n

∑n
i=1 yi +

1
n

. The feasibility of (α , β ) to LPU
∞ is verified via the feasibility of (x ,y) to LPU

n as
follows.

—Constraint Equation (28). We have

(1 − t )α (t ) + 2

∫ t

0

α (s )ds = (1 − t )
(
xi +

1

n

)
+

2

n

i−1∑
j=1

x j + 2
(
t − i − 1

n

)
xi +

2t

n

≥ (1 − t )xi +
2

n

i−1∑
j=1

x j +

(
t − i − 1

n

)
xi =

(
1 − i − 1

n

)
xi +

2

n

i−1∑
j=1

x j ≥ 1.
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—Constraint Equation (39). Note that xn ≤ 1 (otherwise, this implies that LPU
n has optimal

value at least 1). Then, we have

t · α (1) + t · α (t ) +
∫ t

0
[−α (s ) + 2β (s )]ds

= t
(
xn +

1
n

)
+ t
(
xi +

1
n

)
− 1

n

∑i−1
j=1 x j −

(
t − i−1

n

)
xi − t

n
+ 2

n

∑n
j=1 yj +

2
n

= t · xn +
t+2
n
+ i

n
· xi − 1

n

∑i
j=1 x j +

2
n

∑n
j=1 yj

≥ i
n
· xn +

i
n
· xi +

1
n

∑i
j=1

(
−x j + 2yj

)
≥ 0,

where the first inequality follows from t ≥ i−1
n

and hence t · xn +
t+2
n
≥ (i−1)xn+1

n
≥ i

n
· xn .

—Constraint Equation (30). We have

∫ 1

0

[2α (s ) − β (s )]ds =
2

n

n∑
i=1

xi +
2

n
− 1

n

n∑
i=1

yi −
1

n
≥ 1

n

n∑
i=1

(2xi − yi ) ≥ 1. �

Lemma 5.3 (Lower Bounding the Ratio). The performance ratio of unweighted Ranking is at

least the optimal value of LPU
∞.

Proof. Forn ∈ Z+, let ρn be the worst-case performance ratio of unweighted Ranking on graphs
with n nodes. It suffices to show that p∞ ≤ ρn for n ∈ Z+, where p∞ is the optimal value of LPU

∞.
We first claim that given n,m ∈ Z+, there exists N ≥ m such that ρn ≥ ρN . Let k be a positive

integer such that m ≤ kn =: N . Suppose Ranking has performance ratio ρn on Gn with n nodes.
We make k copies of Gn to form a graph GN with N nodes. Then, Ranking also has performance
ratio ρn on GN . Since ρN is the worst-case performance ratio for graphs with N nodes, it follows
that ρn ≥ ρN .

Now suppose there exists n ∈ Z+ such that p∞ > ρn . Then, there exists ϵn > 0 such that
p∞ > ρn + ϵn . Setting m := � 1

ϵn
�, there exists N ≥ � 1

ϵn
� such that ρn ≥ ρN . Hence, p∞ > ρN +

ϵn ≥ pN + ϵn . On the other hand, by Lemma 5.2, we have p∞ ≤ pN +
1
N
≤ pN + ϵn , which is a

contradiction. �

Next, we discuss a procedure for constructing a pair of primal feasible solution (α , β ) and dual
feasible solution (ζ , ξ ,η,γ ) that are “nearly” optimal. The complementary slackness conditions
are not rigorously proved, since closed forms for some of these solutions could not be found.
However, we use these conditions as a guidance to construct a feasible dual solution that is nearly
optimal, the objective value of which is a lower bound for the performance ratio of unweighted
Ranking.

Constructing a Primal Feasible Solution (α , β ). By running experiments on the discrete LPU
n , we

have the following observation. The optimal solution (of the discrete LPU
n ) involves two transition

points, dividing [0, 1] into three intervals. The constraint corresponding to Equation (28) is tight
in the first interval, the one corresponding to Equation (29) is tight in the second interval. The
constraint corresponding to Equation (30) is also tight. The variables corresponding toα are always
positive, which remain constant in the last interval, while those corresponding to β are positive
only in the first interval. This gives us a clue for finding an optimal solution of LPU

∞ in a similar
form as follows.

For (α , β ), we consider two transition points 0 ≤ λ < θ ≤ 1. Set
∫ 1

0
(2α (s ) − β (s ))ds = 1 and

β (t ) = 0 for λ < t ≤ 1. Moreover, we seek for a continuous function α satisfying the following
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equations: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 − t )α (t ) + 2

∫ t

0
α (s )ds − 1 = 0, t ∈ [0, λ] (35)

t · α (1) + t · α (t ) +
∫ t

0
[−α (s ) + 2β (s )]ds = 0, t ∈ [λ,θ] (36)

α (t ) = α (1), t ∈ [θ , 1]. (37)

From Equation (35), we get α (t ) = 1 − t for t ∈ [0, λ]. In particular, α (λ) = 1 − λ. In Equation (36),∫ t

0
β (s )ds =

∫ 1

0
β (s )ds is a constant, assuming β (t ) = 0 for λ < t ≤ 1. Solving this differential

equation, we get α (t ) = c0 − α (1) ln t for t ∈ [λ, μ], where c0 is some constant. The continuity
of α at λ with α (λ) = 1 − λ implies 1 − λ = c0 − α (1) ln λ. Then, c0 = 1 − λ + α (1) ln λ, and hence
α (t ) = 1 − λ − α (1) ln(t/λ) for t ∈ [λ, μ]. Moreover, α (θ ) = α (1) from Equation (37). Then, the con-

tinuity of α at θ gives 1 − λ − α (1) ln(θ/λ) = α (1), and hence α (1) = 1−λ
1+ln(θ /λ) . It follows that

α (t ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − t , t ∈ [0, λ]

(1 − λ)
(
1 − ln(t/λ)

1+ln(θ /λ)

)
, t ∈ [λ, μ]

1−λ
1+ln(θ /λ) , t ∈ [μ, 1].

(38)

By definition of α and Equation (36), we have
∫ 1

0
β (s )ds =

∫ λ

0
β (s )ds = λ2

4 −
(1−λ)λ

2(1+ln(θ /λ)) . Recall

that β (t ) = 0 for λ < t ≤ 1. Also note that β is not required to be continuous in [0, 1]. Hence, we can

simply set β (t ) = λ
4 −

(1−λ)
2(1+ln(θ /λ)) for 0 ≤ t ≤ λ. Then, by using

∫ 1

0
(2α (s ) − β (s ))ds = 1, we have

∫ 1

0
α (s )ds = λ2

8 −
(1−λ)λ

4(1+ln(θ /λ)) +
1
2 . (39)

From Equations (38) and (39), we obtain the following relation between λ and θ :

λ2

2 + (1 − λ)θ + 1−λ
1+ln(θ /λ) · [1 − λ − θ ln(θ/λ)] = λ2

8 −
(1−λ)λ

4(1+ln(θ /λ)) +
1
2 . (40)

It can be easily checked that the solution (α , β ) constructed above is feasible to LPU
∞. Hence, it

remains to find optimal λ and θ . This reduces to the problem of minimizing Equation (39) subject
to Equation (40) with λ,θ ∈ [0, 1]. Experimental results (with precision 1 × 10−6) show that the
optimal transition points are λ ≈ 0.739924 andθ ≈ 0.864958, and the corresponding objective value
is 0.526824.

Constructing a Dual Feasible Solution (ζ , ξ ,η,γ ). Using the above form of primal solution and the
complementary slackness conditions as a guidance, we now construct (ζ , ξ ,η,γ ) with transition
points λ and θ that satisfies the following. The function ζ is positive only in the third interval, ξ
positive only in the first interval, η positive only in the second interval, and γ is a positive real
number. The constraint Equation (33) is always tight in [0, 1], while Equation (34) is tight in the
first interval. With these restrictions, we can construct a dual solution in the following manner.

Let H :=
∫ 1

0
η(s )ds . Setting constraint Equation (34) to be equal for t = 0, we get λ = 2H . Setting

constraint Equation (33) to be equal, we have for t ∈ [0, 1]

ζ ′(t ) + [(1 − t )ξ (t ) + tη(t )] + 2γ +

∫ 1

t

[2ξ (s ) − η(s )]ds = 1. (41)

Next, we derive ξ , η and ζ in their corresponding “non-zero” intervals, respectively.

—For 0 ≤ t ≤ λ, we have η(t ) = ζ (t ) = 0. Equation (41) becomes (1 − t )ξ (t ) +
∫ λ

t
2ξ (s )ds +

3H = 1. Solving this equation, we get ξ (t ) = (1−3H )(1−λ)2

(1−t )3 .

—For λ < t ≤ θ , we have ξ (t ) = ζ (t ) = 0. Equation (41) becomes tη(t ) −
∫ θ

t
η(s )ds + 4H = 1.

Solving this equation, we get η(t ) = (1−4H )θ
t 2 .
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—For θ < t ≤ 1, we have ξ (t ) = η(t ) = 0. Equation (41) becomes ζ ′(t ) + 4H = 1. Solving this
equation with (extra) condition ζ (θ ) = 0, we get ζ (t ) = (1 − 4H ) (t − θ ).

From the definition of η, we have H =
∫ 1

0
η(s )ds =

∫ θ

λ

(1−4H )θ
s2 ds = (1 − 4H ) ( θ

λ
− 1). Hence, H =

θ−λ
4θ−3λ

. Substituting H in the expressions for ζ , ξ , η, and γ , we obtain

ζ (t ) =
⎧⎪⎪⎨⎪⎪⎩

0
0
λ (t−θ )
4θ−3λ

ξ (t ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
θ (1−λ)2

(4θ−3λ)(1−t )3

0
0

η(t ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, 0 ≤ t ≤ λ

λθ
(4θ−3λ)t 2 , λ < t ≤ θ

0, θ < t ≤ 1

γ = 2(θ−λ)
4θ−3λ

.

Moreover, the objective function of LDU
∞ is

−ζ (0) +

∫ 1

0

ξ (t )dt + γ =
θ (λ − λ2/2) + 2(θ − λ)

4θ − 3λ
. (42)

It can be easily checked that the solution (ζ , ξ ,η,γ ) constructed above satisfies Equations (31), (33),
and (34). On the other hand, the satisfiability of Equation (32) depends on the specific values of λ
and θ , which can be expressed as follows:

−ζ (1) +

∫ 1

0

tη(t )dt =
λ

4θ − 3λ
· [θ (1 + ln(θ/λ)) − 1] ≤ 0. (43)

Hence, solving LDU
∞ reduces to the problem of maximizing Equation (42) subject to Equation (43)

with λ,θ ∈ [0, 1]. By running experiments, we find that there exist transition points λ ≈ 0.739924
and θ ≈ 0.864954 such that Equation (43) is satisfied and the corresponding value of Equation (42)
is 0.526823.

Proof of Theorem 1.3. By using the procedure described above, we can construct a feasible
solution (ζ , ξ ,η,γ ) to LDU

∞ with objective value at least 0.526823. By Lemmas 5.1 and 5.3 the per-
formance ratio of unweighted Ranking is at least 0.526823. �
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