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Abstract
Stable and balanced outcomes of network bargaining games have been investigated
recently, but the existence of such outcomes requires that the linear program relax-
ation of a certain maximum matching problem have integral optimal solution. We
propose an alternative model for network bargaining games in which each edge acts
as a player, who proposes how to split the weight of the edge among the two inci-
dent nodes. Based on the proposals made by all edges, a selection process will return
a set of accepted proposals, subject to node capacities. An edge receives a commis-
sion if its proposal is accepted. The social welfare can be measured by the weight of
the matching returned. The node users exhibit two characteristics of human nature:
greed and idealism. We define these notions formally and show that the distributed
protocol by Kanoria et al. can be modified to be run by the edge players such that
the configuration of proposals will converge to a pure Nash Equilibrium, without the
integrality gap assumption. Moreover, after the nodes have made their greedy and
idealistic choices, the remaining ambiguous choices can be resolved in a way such
that there exists a Nash Equilibrium that will not hurt the social welfare too much.

Keywords Network bargaining game · Nash equilibrium ·
Optimizing social welfare · Unstable outcome · Greed and idealism

1 Introduction

Bargaining games have been studied with a long history, early in economics [20]
and sociology, and recently in computer science, there has been a lot of attention
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on bargaining games in social exchange networks [1, 4, 6, 16, 17], in which users
are modeled as nodes in an undirected simple graph G = (V , E), whose edges are
weighted. An edge {i, j} ∈ E with weight wij > 0 means that users i and j can
potentially form a contract with each other and split a profit of wij . A capacity vec-
tor b ∈ Z

V+ limits the maximum number bi of contracts node i can form with its
neighbors, and the set M of executed contracts form a b-matching in G.

In previous work, the nodes bargain with one another to form an outcome which
consists of the set M of executed contracts and how the profit in each contract is
distributed among the two participating nodes. The outside option of a node is the
maximum profit the node can get from another node with whom there is no current
contract. An outcome is stable if for every contract a node makes, the profit the node
gets from that contract is at least its outside option. Hence, under a stable outcome,
no node has motivation to break its current contract to form another one. Extending
the notion of Nash bargaining solution [20], Cook and Yamagishi [12] introduced the
notion of balanced outcome. An outcome is balanced if, in addition to stability, for
every contract made, after each participating node gets its outside option, the surplus
is divided equally between the two nodes involved. For more notions of solutions,
the reader can refer to [8].

Although stability is considered to be an essential property, as remarked in [4, 6,
16], a stable outcome exists iff the linear program LP relaxation (given in Section 4)
for the b-matching problem on the given graph G has integrality gap 1. Hence, even
for very simple graphs like a triangle with unit node capacities and unit edge weights,
there does not exist a stable outcome. Previous work simply assumed that the LP has
integrality gap 1 [9, 16] or considered restriction to bipartite graphs [4, 17], for which
the LP always has integrality gap 1.

We consider the integrality gap condition as a limitation to the applicability of such
framework in practice. We would like to consider an alternative model for network
bargaining games and investigate different notions of equilibrium, whose existence
does not require the integrality gap condition.

Our Contribution andResults In this work, we let the edges take over the role of play-
ers from the nodes. Each edge e = {i, j} ∈ E corresponds to an agent, who proposes
a way to divide up the potential profit wij among the two nodes. Formally, each edge
{i, j} has the action set Aij := {(x, y) : x ≥ 0, y ≥ 0, x+y ≤ we}, where a proposal
(x, y) means that node i gets amount x and j gets amount y.1 Based on the configu-
ration m ∈ AE := ×e∈EAe of proposals made by all the agents, a selection process
(which can be randomized) will choose a b-matching M , which is the set of contracts
formed. An agent e will receive a commission if his proposal is selected; his pay-
off ue(m) is the probability that edge e is in the matching M returned.2 Observe that
once the payoff function u is defined, the notion of (pure or mixed) Nash Equilibrium
is also well-defined. We measure the social welfare S(m) by the (expected) weight
w(M) of the matching M returned, which reflects the volume of all transactions.

1In case x + y < wij the remaining amount is lost and not gained by anyone.
2The actual gain of an agent could be scaled according to the weight we , but this will not affect the Nash
Equilibrium.
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We have yet to describe the selection process which will determine the payoff
function to each agent, and hence will affect the corresponding Nash Equilibrium.
We mention earlier that the players in our framework will be the edges, as opposed
to the nodes in previous work; in fact, in the selection process we assume the node
users will exhibit two characteristics of human nature: greed and idealism.

Greedy Users. For a node i with capacity bi , user i will definitely want an offer
that is strictly better than his (bi + 1)-st best offer. If this happens for both users
forming an edge, then the edge will definitely be selected. We also say the resulting
payoff function is greedy.

Idealistic Users. Idealism captures the situation that once a person has seen a better
offer, he would not settle for anything less, even if the original better offer is no
longer available. If user i with capacity bi sees that an offer is strictly worse than
his bi-th best offer, then the corresponding edge will definitely be rejected. We
also say the resulting payoff function is idealistic.

One can argue that greed is a natural behavior (hence the regime of greedy algo-
rithms), but idealism is clearly not always rational. In fact, we shall see in Section 2
that there exist a idealistic payoff function and a configuration of agent proposals
that is a pure Nash Equilibrium, in which all proposals are rejected by the users out
of idealism, even though no single agent can change the situation by unilaterally
offering a different proposal. The important question is that: can the agents follow
some protocol that can avoid such bad Nash Equilibrium? In other words, can they
collaboratively find a Nash Equilibrium that achieves good social welfare?

We answer the above question in the affirmative. We modify the distributed pro-
tocol of Kanoria et al. [6, 16] to be run by edge players and allow general node
capacities b. As before, the protocol is iterative and the configuration of propos-
als returned will converge to a fixed point m of some non-expansive function T . In
Section 3, we show that provided the payoff function u is greedy and idealistic, then
any fixed point m of T is in the corresponding set Nu of pure Nash Equilibria.

In Section 4, we analyze the social welfare through the linear program LP relax-
ation of the maximum b-matching problem. As in [6, 16], we investigate the close
relationship between a fixed point of T and LP. However, we go beyond previous
analysis and do not need the integrality gap assumption, i.e., LP might not have an
integral optimum. We show that when greedy users choose an edge, then all LP opti-
mal solutions must set the value of that edge to 1; on the other hand, when users reject
an edge out of idealism, then all LP optimal solutions will set the value of that edge
to 0. We do need some technical assumptions in order for our results to hold: either
(1) LP has unique optimum, or (2) the given graph G has no even cycle such that the
sum of the weights of the odd edges equals that of the even edges; neither assumption
implies the other, but both can be achieved by perturbing slightly the edge weights
of the given graph. Unlike the case for simple 1-matching, we show that assump-
tion (2) is necessary for general b-matching, showing that there is some fundamental
difference between the two cases.

The greedy behavior states that some edges must be selected and the idealistic
behavior requires that some edges must be rejected. However, there is still some
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freedom to deal with the remaining ambiguous edges.3 Observe that a fixed point
will remain a Nash Equilibrium (for the edge players) no matter how the ambigu-
ous edges are handled, so it might make sense at this point to maximize the total
number of extra contracts made from the ambiguous edges. However, optimizing the
cardinality of a matching can be arbitrarily bad in terms of weight, but a maximum
weight matching is a 2-approximation in terms of cardinality. Therefore, in Section 5,
we consider a greedy and idealistic payoff function u that corresponds to selecting
a maximum matching (approximate or exact) among the ambiguous edges (subject
to remaining node capacities b′); in reality, we can imagine this corresponds to a
centralized clearing process or a collective effort performed by the users. We show
that if a (1 + c)-approximation algorithm for maximum weight matching is used for
the ambiguous edges, then the social welfare is at least 2

3(1+c)
fraction of the social

optimum, i.e., the price of stability is 1.5(1 + c).
Finally, observe that the iterative protocol we mention will converge to a fixed

point, but might never get there exactly. Hence, we relax the notions of greed and
idealism in Section 6 to analyze the properties of a near fixed point. Specifically,
user i with capacity bi is ε-greedy, if he will definitely want an offer that is strictly
ε better than his (bi + 1)-st best offer. Similarly, user i is ε-idealistic, if he will
definitely reject an offer that is strictly ε worse than his bi-th best offer. We show that
the same guarantee on the price of stability can be achieved eventually (and quickly).
For ease of understanding, we encourage the reader to first read Sections 4 and 5 for
the special case ε = 0 in order to understand our approach. Section 6 describes how
our arguments need to be augmented for the general case ε > 0.

We remark that if the topology of the given graph and the edge weights naturally
indicate that certain edges should be selected while some should be rejected (both
from the perspectives of social welfare and selfish behavior), then our framework
of greed and idealism can detect these edges. However, we do not claim that our
framework is a silver bullet to all issues; in particular, for the triangle example given
above, all edges will be ambiguous and our framework simply implies that one node
will be left unmatched, but does not specify how this node is chosen. We leave as
future research direction to develop notions of fairness in such situation.

Last but not least, this work is by no means an attempt to model realistic human
behavior (which is of course a daunting, if not impossible, task). What we have shown
here is that given the rules of greed and idealism, agents can exploit rules to achieve
desirable Nash equilibria.

Related Work Kleinberg and Tardos [17] recently started the study of network
bargaining games in the computer science community; they showed that a stable
outcome exists iff a balanced outcome exists, and both can be computed in polyno-
mial time, if they exist. Chakraborty et al. [10, 11] explored equilibrium concepts
and experimental results for bipartite graphs. Celis et al. [9] gave a tight polyno-
mial bound on the rate of convergence for unweighted bipartite graphs with a unique

3As a side note, we remark that our results implies that under the unique integral LP optimum assumption,
there will be no ambiguous edges left.



Theory of Computing Systems

balanced outcome. Kanoria [15] considered unequal division (UD) solutions for bar-
gaining games, in which stability is still guaranteed while the surplus is split with
ratio r : 1 − r , where r ∈ (0, 1). They provided an FPTAS for the UD solutions
assuming the existence of such solutions.

Azar et al. [1] considered a local dynamics that converges to a balanced outcome
provided that it exists. Assuming that the LP relaxation for matching has a unique
integral optimum, Kanoria et al. [6, 16] designed a local dynamics that converges in
polynomial time. Our distributed protocol is based on [6, 16], but is generalized to
general node capacities, run by edges and does not require the integrality condition
on LP.

Bateni et al. [4] also considered general node capacities; moreover, they showed
that the network bargaining problem can be recast as an instance of the well-studied
cooperative game [13]. In particular, a stable outcome is equivalent to a point in the
core of a cooperative game, while a balanced outcome is equivalent to a point in
the core and the prekernel. Azar et al. [2] also studied bargaining games from the
perspective of cooperative games, and proved some monotonicity property for several
widely considered solutions.

In our selection process, we assume that the maximum weight b′-matching prob-
lem is solved on the ambiguous edges. This problem is well-studied and can be
solved exactly in polynomial time [23][Section 33.4]; moreover, the problem can be
solved by a distributed algorithm [5], and (1 + c)-approximation for any c > 0 can
be achieved in poly-logarithmic time [18, 19, 21].

2 Notation and Preliminaries

Consider an undirected simple graph G = (V , E), with vertex set V and edge set
E. Each node i ∈ V corresponds to a user i (vertex player), and each edge e ∈
E corresponds to an agent e (edge player). Agents arrange contracts to be formed
between users where each agent e = {i, j} gains a commission when users i and j

form a contract. Each edge e = {i, j} ∈ E has weight we = wij > 0, which is
the maximum profit that can be shared between users i and j if a contract is made
between them. Given a node i, denoting by N(i) := {j ∈ V : {i, j} ∈ E} the set of
its neighbors in G, there exists a capacity vector b ∈ Z

V+ such that each node i can
make at most bi contracts with its neighbors in N(i), where at most one contract can
be made between a pair of users; hence, the set M of edges on which contracts are
made is a b-matching in G.

Agent Proposal For each e = {i, j} ∈ E, agent e makes a proposal of the form
(mj→i , mi→j ) from an action set Ae to users i and j , where Ae := {(x, y) : x ≥
0, y ≥ 0, x + y ≤ wij }, such that if users i and j accepts the proposal and form a
contract with each other, user i will receive mj→i and user j will receive mi→j from
this contract.

Selection Procedure and Payoff Function u Given a configuration m ∈ AE :=
×e∈EAe of all agents’ proposals, a selection procedure is run on m to return a
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b-matching M , where an edge e = {i, j} ∈ M means that a contract is made between
i and j . The procedure can be (1) deterministic or randomized, (2) centralized or
(more preferably) distributed.

If i and j are matched in M , i.e., e = {i, j} ∈ M , agent e will receive a commis-
sion, which can either be fixed or a certain percentage of we; since an agent either
gains the commission or not, we can assume that its payoff is 1 when a contract
is made and 0 otherwise. Hence, the selection procedure defines a payoff function
u = {ue : AE → [0, 1]|e ∈ E}, such that for each e ∈ E, ue(m) is the proba-
bility that the edge e is in the b-matching M returned when the procedure is run on
m ∈ AE . We shall consider different selection procedures, which will lead to dif-
ferent payoff functions u. However, the selection procedure should satisfy several
natural properties, which we relate to the human nature of the users as follows.

We use max(b) to denote the b-th maximum value among a finite set of numbers
(by convention it is 0 if there are less than b numbers). Given m ∈ AE , we define
m̂i = max(bi )

j∈N(i) mj→i and mi = max(bi+1)
j∈N(i) mj→i .

Greedy Users If both users i and j see that they cannot get anything better from
someone else, then they will definitely make a contract with each other. Formally,
we say that the payoff function u is greedy (or the users are greedy), if for each
e = {i, j} ∈ E and m ∈ AE , if mj→i > mi and mi→j > mj , then ue(m) = 1.

Idealistic Users It is human nature that once a person has seen the best, they will
not settle for anything less. We try to capture this behavior formally. We say that the
payoff function u is idealistic (or the users are idealistic) if for each e = {i, j} ∈ E

and m ∈ AE , if mj→i < m̂i , then ue(m) = 0, i.e., if user i cannot get the bi-th best
offer from j , then no contract will be formed between i and j .

Game Theory and Social Welfare We have described a game between the agents,
in which agent e has the action set Ae, and has payoff function u (deter-
mined by the selection procedure). In this paper, we consider pure strategies and
pure Nash Equilibria. A configuration m ∈ AE of actions is a Nash Equi-
librium if no single player can increase its payoff by unilaterally changing its
action.

Given a payoff function u, we denote by Nu ⊂ AE the set of Nash Equilibria.
Given a configuration m ∈ AE of proposals and a payoff function u, we measure
social welfare by Su(m) := ∑

e∈E we · ue(m), which is the expected weight of the
b-matching returned. When there is no ambiguity, the subscript u is dropped. The
optimal social welfare S∗ := maxm∈AE

S(m) is the maximum weight b-matching;
to achieve the social optimum, given a maximum weight b-matching M , every agent
e ∈ M proposes (we

2 , we

2 ), while other agents proposes (0, 0). The weight of the b-
matching can be an indicator of the volume of transactions or how active the market
is. The Price of Anarchy (PoA) is defined as S∗

minm∈N S(m)
and the Price of Stability

(PoS) is defined as S∗
maxm∈N S(m)

.
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Proposition 1 (Infinite Price of Anarchy) There exists an instance of the game such
that when the users are idealistic, there exists a Nash Equilibrium m ∈ AE under
which no contracts are made.

Proof We take G to be the complete graph K5 on five nodes, where each edge has
unit weight, and each node has unit capacity. It is straight forward to construct a
configuration m ∈ AE of proposals that has the following properties (Fig. 1).

(a) Each agent splits the weight into (0.4, 0.6).
(b) Each user gets two offers with profit 0.4 and two offers with profit 0.6.

Observe that for idealistic users, no contract will be accepted, because for each
contract there will be a user getting 0.4, which is worse than his best choice 0.6.
Hence, S(m) = 0.

We next show that m is a Nash Equilibrium. Consider an edge e = {i, j} where
under m, user i gets 0.4 and user j gets 0.6. Since currently the best offer i receives
is 0.6, in order for edge e to have any chance to be considered by user i, agent e

must offer at least 0.6 to i, which means there is only at most 0.4 to be offered to
user j , who will definitely reject e because user j still has another offer with 0.6.
Hence, there is no way for any agent to change his strategy unilaterally to increase
his payoff.

3 A Distributed Protocol for Agents

We describe a distributed protocol for the agents to update their actions in each iter-
ation. The protocol is based on the one by Kanoria et al. [6, 16], which is run by
nodes and designed for (1-)matchings. The protocol can easily be generalized to be
run by edges and for general b-matchings. In each iteration, two agents only need to
communicate if their corresponding edges share a node. Given a real number r ∈ R,

Fig. 1 K5
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we denote (r)+ := max{r, 0}. Moreover, as described in [3, 16] a damping factor
κ ∈ (0, 1) is used in the update; we can think of κ = 1

2 .
Although later on we will also consider the LP relaxation of b-matching, unlike

previous works [7, 16, 22], we do not require the assumption that the LP relaxation
has a unique integral optimum.

In Algorithm 1, auxiliary variables α(t) ∈ R
2|E|
+ are maintained. Intuitively, the

parameter αi\j is meant to represent the bi-th best offer user i can receive if user j

is removed. Suppose W := maxe∈E we and we define a function T : [0, W ]2|E| →
[0, W ]2|E| as follows.

Given α ∈ [0, W ]2|E|, for each {i, j} ∈ E, define the following quantities.

Sij (α) = wij − αi\j − αj\i (1)

mj→i (α) = (wij − αj\i )+ − 1

2
(Sij (α))+ (2)

Then, we define T (α) ∈ [0, W ]2|E| by (T (α))i\j := max(bi )
k∈N(i)\j mk→i (α). It fol-

lows that Algorithm 1 defines the sequence {α(t)}t≥1 by α(t+1) := (1 − κ)α(t) +
κT (α(t)).

Given a vector space D, a function T : D → D is non-expansive under norm || · ||
if for all x, y ∈ D, ||T (x)− T (y)|| ≤ ||x − y||; a point α ∈ D is a fixed point of T if
T (α) = α. As in [6, 16], it can be proved that the function T is non-expansive. The
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following result by Ishikawa [14] shows that by applying a non-expansive function
repeatedly, convergence to a fixed point can be obtained.

Fact 1 ([14]) Suppose T : D → D is a non-expansive function under norm || · ||
and for some κ ∈ (0, 1) and some initial α(1) ∈ D, the sequence {α(t)} is defined
by α(t+1) := (1 − κ) · α(t) + κ · T (α(t)). Suppose further that the sequence {α(t)} is
bounded under norm || · ||. Then, the sequence {α(t)} converges (under norm || · ||) to
some fixed point of T .

Claim 1 Given a weighted graphG = (V , E)with maximumweightW , the function
T : [0, W ]2|E| → [0, W ]2|E| is non-expansive under the �∞ norm.

Proof The claim can be proved in a similar way as in [16]. We observe the following
facts.

– The ‘max(bi )’ in the mapping is non-expansive. To prove this, it suffices to show
that given two vectors x and y with the same dimension d larger than b, the
following holds

|max
i∈[d]

(b)xi − max
i∈[d]

(b)yi | ≤ max
i∈[d] |xi − yi |.

Let b1 := argmax(b)
i∈[d] xi and b2 := argmax(b)

i∈[d] yi . Without loss of generality,
assume xb1 ≤ yb2 . If yb1 ≥ yb2 , then |xb1 −yb2 | ≤ |xb1 −yb1 |. If yb1 < yb2 , there
exists k ∈ [d] satisfying yk ≥ yb2 such that xk ≤ xb1 . Then |xb1−yb2 | ≤ |xk−yk|.
Therefore, |xb1 − yb2 | ≤ maxi∈[d] |xi − yi |.

– The variablem = m(α) is non-expansive according to its definition. Letmi→j =
f (αi\j , αj\i ), where f (x, y) is given by

f (x, y) =
{ wij −x+y

2 x + y ≤ wij ,

(wij − x)+ otherwise.

It can be checked that f is continuous in R
2+. Also, it is differentiable except

in {(x, y) ∈ R
2+ : x + y = wij or x = wij }, and satisfies | ∂f

∂x
| + | ∂f

∂y
| ≤ 1.

Therefore, f is Lipschitz continuous in the �∞ norm with Lipschitz constant 1
and is non-expansive.

Fact 1 and Claim 1 give Theorem 1.

Theorem 1 (Convergence to a Fixed Point) The distributed protocol shown in Algo-
rithm 1 maintains the sequence {α(t)} which converges to a fixed point of the function
T under the �∞ norm.

Properties of a Fixed Point Given a fixed point α of the function T , the quantities
S ∈ R

|E| and m ∈ AE are defined according to (1) and (2). We also say that (m, α, S)

or (m, α) or m is a fixed point (of T ). Similar to [16], we give several important
properties of a fixed point. In particular, we give the following propositions on which
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Theorem 2 is based. Recall that m̂i := max(bi )
k∈N(i) mk→i and mi := max(bi+1)

k∈N(i) mk→i ,

and in addition to (2), a fixed point (m, α) also satisfies αi\j = max(bi )
k∈N(i)\j mk→i .

Proposition 2 (Outside option α) Suppose for each {i, j} ∈ E, we have αi\j =
max(bi )

k∈N(i)\j mk→i . Then, the following properties hold.

(a) If mj→i < m̂i , then αi\j = m̂i ; if mj→i ≥ m̂i , then αi\j = mi .
(b) mj→i ≥ m̂i iff mj→i ≥ αi\j ; mj→i ≤ mi iff mj→i ≤ αi\j ;

Proof (a) If mj→i < m̂i , that is, the offer that user i gets from j is not one of its

best bi offers, then αi\j = max(bi )
k∈N(i)\j mk→i = max(bi )

k∈N(i) mk→i = m̂i .
If mj→i ≥ m̂i , that is, the offer that user i gets from j is at least as good as

its bi-th best offer, then αi\j = max(bi )
k∈N(i)\j mk→i = max(bi+1)

k∈N(i) mk→i = mi .
Note that the equalities hold even if m̂i = mi .

(b) Proposition 2(a) and its proof imply the following

– If mj→i ≥ m̂i , then αi\j = mi ≤ m̂i ≤ mj→i . If mj→i < m̂i , then
αi\j = m̂i > mj→i .

– If mj→i ≤ mi , then αi\j = m̂i ≥ mi ≥ mj→i . If mj→i > mi , then
mj→i ≥ m̂i and thus αi\j = mi < mj→i .

Proposition 3 (α defining (S, m)) Suppose given α ∈ [0, W ]2|E|, the quantities S ∈
R

|E| and m ∈ AE are defined as in (1) and (2). Then, the following properties hold
for each {i, j} ∈ E.

(a) Sij > 0 iff mj→i > αi\j ;
(b) Sij = 0 iff mj→i = αi\j and mi→j = αj\i .

Proof (a) Recall that Sij = wij −αi\j −αj\i andmj→i = (wij −αj\i )+− 1
2 (Sij )+.

If Sij > 0, then wij −αj\i = Sij +αi\j > 0. Thereforemj→i = (Sij +αi\j )+−
1
2 (Sij )+ = αi\j + 1

2Sij > αi\j .
On the other hand, if Sij ≤ 0, then mj→i = (Sij + αi\j )+ = max(Sij +

αi\j , 0) ≤ αi\j .
(b) If Sij = 0, then mj→i = (Sij +αi\j )+ − 1

2 (Sij )+ = αi\j and similarly mi→j =
αj\i .

If mj→i = αi\j and mi→j = αj\i , then from Proposition 3(a) we have
Sij ≤ 0. Therefore mj→i + mi→j = αi\j + αj\i = wij − Sij ≥ wij . Since
mj→i + mi→j ≤ wij , we have mj→i + mi→j = wij and therefore Sij = 0.

Proposition 4 (Fixed Point (m, α)) Suppose (m, α) is a fixed point of T . Then, for
each {i, j} ∈ E, the following properties hold.

(a) If mj→i > 0 and mj→i ≥ m̂i , then Sij ≥ 0; if Sij ≥ 0, then mj→i ≥ m̂i .
(b) mj→i ≤ mi iff Sij ≤ 0.

Proof (a) Suppose mj→i > 0 and mj→i ≥ m̂i . Then from Proposition 2(b), we
have mj→i ≥ αi\j . Consider the following two cases:
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– mj→i > αi\j . Then, from Proposition 3(a) we have Sij > 0.
– mj→i = αi\j . Then, from Proposition 3(a) we have Sij ≤ 0. Since mj→i >

0, it follows that αi\j = mj→i = (wij − αj\i )+ − 1
2 (Sij )+ = wij − αj\i

and so Sij = 0.

Therefore, Sij ≥ 0.
For the converse, Sij ≥ 0 implies from Proposition 3 that mj→i ≥ αi\j ,

which implies from Proposition 2(b) that mj→i ≥ m̂i .
(b) We have by Proposition 2(b) that mj→i ≤ mi iff mj→i ≤ αi\j , which is

equivalent to Sij ≤ 0 by Proposition 3(a).

Theorem 2 (Fixed Point is NE) Suppose the payoff function u is greedy and
idealistic. Then, any fixed point m ∈ AE of T is a Nash Equilibrium in Nu.

Proof Let (m, α, S) be a fixed point of T . We show that for each e = {i, j} ∈ E,
agent e cannot increase ue(m) by changing its action me unilaterally.

If Sij (m) < 0, i.e. αi\j + αj\i > wij , then any proposal (m′
j→i , m

′
i→j ) ∈ Ae

must satisfy m′
j→i + m′

i→j ≤ wij < αi\j + αj\i , which implies that m′
i→j < αj\i

or m′
j→i < αi\j . Since the payoff function is idealistic, it follows that i and j cannot

be matched. Hence, ue = 0 if other agents maintain their actions.
If Sij (m) > 0, then by Proposition 4(b), mj→i > mi and mi→j > mj . Since the

payoff function u is greedy, we already have ue(m) = 1 and there is no more room
for improvement.

If Sij (m) = 0, then by Proposition 3(b), mj→i = αi\j and mi→j = αj\i . This
also implies that mi→j +mj→i = wi,j . Then, any change of (mi→j , mj→i ) will lead
to either m′

j→i < αi\j and m′
i→j < αj\i , which means there is no chance for {i, j}

to be matched for idealistic payoff function u.

Theorems 1 and 2 imply that as long as the payoff function is greedy and ideal-
istic, the game defined between the agents (edge players) always has a pure Nash
Equilibrium.

4 Analyzing Social Welfare via LP Relaxation

Theorem 2 states that a fixed point (m, α) of the function T is a Nash Equilibrium in
Nu, as long as the underlying payoff function is greedy and idealistic. Our goal is to
show that there exists some greedy and idealistic u such that the fixed point m also
achieves good social welfare Su(m) = ∑

e∈E we · ue(m).
As observed by Kanoria et al. [16], the network bargain game is closely related

to the linear program LP relaxation of the b-matching problem, which has the form
SLP := maxx∈L w(x), where w(x) := ∑

{i,j}∈E xijwij and L := {x ∈ [0, 1]E :
∀i ∈ V,

∑

j :{i,j}∈E xij ≤ bi} is the set of feasible fractional solutions. Given
x ∈ L, we say a node i is saturated under x if

∑

j :{i,j}∈E xij = bi , and otherwise
unsaturated.
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They showed that when the LP relaxation has a unique integral maximum, a fixed
point (m, α, S) corresponds naturally to the unique maximum (1-)matching. How-
ever, their analysis cannot cover the case when the optimal solution is fractional or
when the maximum matching is not unique.

In this section, we fully exploit the relationship between a fixed point and the LP
relaxation, from which we show that good social welfare can be achieved. Note that
we do not require the unique integral optimum assumption. On the other hand, we
assume that either (1) the LP has a unique optimum or (2) the following technical
assumption.

No Cycle with Equal Alternating Weight We say that a cycle has equal alternating
weight if it is even, and the sum of the odd edges equals that of the even edges.
We assume that the given weighted graph G has no such cycle. The weights of any
given graph can be perturbed slightly such that this condition holds. Observe that the
optimum of LP might not be unique even with this assumption.

The main technical properties are as follows.

Theorem 3 (Fixed Point and LP) Suppose LP has a unique optimum or the graph
G has no cycle with equal alternating weight, and (m, α, S) is a fixed point of T .

Then, for any edge {i, j} ∈ E, the following holds.

(a) Suppose LP has a unique integral optimum corresponding to the maximum b-
matching M∗. Then, Sij ≥ 0 implies that {i, j} ∈ M∗.

(b) Suppose Sij > 0. Then, any optimal solution x to LP must satisfy xij = 1.
(c) Suppose Sij < 0. Then, any optimal solution x to LP must satisfy xij = 0.

For the 1-matching case, the conclusions listed in Theorem 3 have been derived
by Kanoria et al. [16] without the no-alternating-cycle assumption. However, for
general b-matching, this assumption in Theorem 3 is necessary for cases (b) and
(c). We show that without this technical assumption, there is a counter example for
Theorem 3(b).

Consider the graph given in Fig. 2, which contains a cycle with equal alternating
weight, e.g. {C, D, E, F, C}. Each note has capacity 2. The offers specified on the
edges form a fixed point of T . It can be checked that SAC > 0, while every opti-
mal solution of the corresponding LP has xAC = 0. Thus, case (b) of Theorem 3 is
incorrect for this given graph. By slight modification of the given graph, a counter
example for Theorem 3(c) can be constructed.

Although the three statements in Theorem 3 look quite different, they can be
implied by the three similar-looking corresponding statements in the following
lemma.

Lemma 1 (Fixed Point and LP) Suppose (m, α, S) is a fixed point of T , and x is a
feasible solution to LP. Then, for each {i, j} ∈ E, the following properties hold.

(a) If Sij ≥ 0 and xij = 0, then there is x̂ ∈ L such that x̂ �= x and w(̂x) ≥ w(x).
(b) If Sij > 0 and xij < 1, then there is x̂ ∈ L such that x̂ �= x and w(̂x) ≥ w(x).
(c) If Sij < 0 and xij > 0, then there is x̂ ∈ L such that x̂ �= x and w(̂x) ≥ w(x).
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Fig. 2 Graph with Equal
Alternating Weight: The
numbers on the edges indicate
how the agents split the weights,
e.g. C gets 2 and A gets 1 from
edge {A,C}

Moreover, strict inequality holds for (b) and (c), if in addition the graph G has no
cycle with equal alternating weight.

4.1 Finding Alternative Feasible Solution via Alternating Traversal

Lemma 1 shows the existence of alternative feasible solutions under various condi-
tions. We use the unifying framework of alternating traversal to show its existence.

Alternating Traversal Given a fixed point (m, α, S) of T and a feasible solution x ∈
L, we define a structure called alternating traversal as follows.

(1) An alternating traversal Q (with respect to (m, α, S) and x) is a path or cir-
cuit (not necessarily simple and might contain repeated edges), which alternates
between two disjoint edge sets Q+ and Q− (hence Q can be viewed as a mul-
tiset which is the disjoint union of Q+ and Q−) such that Q+ ⊂ S+ and
Q− ⊂ S−, where S+ := {e ∈ E : Se ≥ 0} and S− := {e ∈ E : Se ≤ 0}.

The alternating traversal is called feasible if in additionQ+ ⊂ E+ andQ− ⊂
E−, where E+ := {e ∈ S+ : xe < 1} and E− := {e ∈ S− : xe > 0}.

An edge e is called critical if e is in exactly one of E+ and E−, and is
called strict if Se �= 0. Given an edge e ∈ E, we denote by rQ(e) the number
of times e appears in Q, and by sgnQ(e) to be +1 if e ∈ Q+, −1 if e ∈
Q− and 0 otherwise. Given a multiset U of edges, we denote by w(U) :=
∑

e∈U rU (e)we the sum of the weights of the edges in U in accordance with
each edge’s multiplicity.

(2) The following additional properties must be satisfied if the traversal Q is a
path. If one end of the path has edge {i, j} ∈ Q+ and end node i, then i is
unsaturated under x, i.e.,

∑

e:i∈e xe < bi ; if the end has edge {i, j} ∈ Q− and
end node i, then αi\j = 0. Observe that there is a special case where the path
starts and ends at the same node i; we still consider this as the path case as long
as the end node conditions are satisfied for both end edges (which could be the
same).
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Lemma 2 (Alternative Feasible Solution.) Suppose Q is a feasible alternating
traversal with respect to some feasible x ∈ L. Then, there exists feasible x̂ �= x such
that w(̂x) − w(x) has the same sign ({−1, 0, +1}) as w(Q+) − w(Q−).

Proof Suppose Q is a feasible alternating traversal. Then, for some λ > 0, we can
define an alternative feasible solution x̂ �= x by x̂e := xe + λ · sgnQ(e) · rQ(e).
Moreover, w(̂x) − w(x) = λ(w(Q+) − w(Q−)).

Lemma 3 (Alternating Traversal Weight) Suppose Q is an alternating traversal.
Then, the following holds.

(a) We have w(Q+) ≥ w(Q−), where strict inequality holds if Q contains a strict
edge.

(b) If Q is a simple cycle with no strict edges, then w(Q+) = w(Q−), i.e, Q is
a cycle with equal alternating weight; in particular, with the “no cycle with
alternating weight” assumption, any alternating traversal that is an even cycle
must contain a strict edge.

Proof Consider consecutive edges {i, j} ∈ Q+ and {j, k} ∈ Q− in the alternating
traversal.

Since Sij ≥ 0, by Proposition 4(a), we have mi→j ≥ m̂j . Since αj\k is either m̂j

or mj , we have αj\k ≤ m̂j . Therefore, mi→j ≥ αj\k .
Suppose {j, k} is strict, i.e., Sjk < 0. Then, by definition, we have αj\k + αk\j >

wjk .
Suppose {i, j} is strict, i.e., Sij > 0. Then we show that either mi→j > αj\k or

αj\k + αk\j > wjk holds. From Proposition 3(a), we have mi→j > αi\j , which
implies by Proposition 2(b) that mi→j > mj . If m̂j = mj , then mi→j > m̂j ≥ αj\k .
If m̂j > mj , then Sjk ≤ 0 together with Proposition 4(b) implies mk→j ≤ mj < m̂j .
Then from Proposition 2(a) we have αj\k = m̂j and thus mk→j < αj\k . It follows
from Proposition 3 that Sjk < 0, that is, αj\k + αk\j > wjk .

We next show that w(Q+) ≥ w(Q−) by a “paying” argument. Observe that for
Sij ≥ 0, we have wij = mj→i +mi→j , and for Sjk ≤ 0, we have αj\k +αk\j ≥ wjk .
Since we havemi→j ≥ αj\k , it follows that we can split the weight of every edge into
2 parts, such that each part of the weight from an edge inQ+ can be used to pay for a
part of the weight in a neighboring edge inQ−. Observe that if {j, k} ∈ Q− and node
k is an end point of the traversal, then αk\j = 0 and so there is no need for k to have
a neighboring edge in Q+ to pay for this part. Hence, we have w(Q+) ≥ w(Q−).
Observe that if Q contains a strict edge, then at least one of the inequalities mi→j ≥
αj\k and αj\k + αk\j ≥ wjk becomes strict and hence we have w(Q+) > w(Q−).

Finally, ifQ is a simple cycle with no strict edges, then all edges {i, j} ∈ Q satisfy
Sij = 0. Hence, the roles ofQ+ andQ− can be exchanged and so w(Q+) = w(Q−)

follows.

Growing Procedure Using Lemma 4, we can grow an alternating traversal with edges
alternating between E+ and E−. We start the procedure from a critical edge e =
{i, j}, i.e., in exactly one of E+ and E−.
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1. If the growth process stops at both ends eventually without revisiting nodes, then
we have a simple generalized alternating traversal path containing the edge e.

2. Suppose the growth process revisits a node starting from one end, say for the one
from node j . Then, at some point a node is revisited, and suppose k is the first
node to be revisited and we have a simple cycle C. If C is even, then C forms a
generalized alternating traversal ̂Q that is an even cycle.

3. If C is odd and k �= i, then we continue to grow from k; we next consider the
case k = i, and suppose l is the node before i is revisited again. Observe that
since C is odd, the edges {i, j} and {i, l} are either both in ̂E+ or both in ̂E−.
Suppose we continue to grow from i with respect to the edge {l, i} according to
R and the next node is h; since {i, j} is in exactly one of ̂E+ and ̂E−, it follows
that h �= j , and so we can continue the growth process. At this point, the partial
traversal forms a “lollipop” graph with the odd cycle C, and we are growing the
stem.

4. If the growth process at the stem stops at some node g without revisiting nodes,
then we have a generalized alternating traversal ̂Q that is considered to be a path
starting at g, traveling along the stem to k, then along the cycle C back to k, and
finally returning to g along the stem again. Note that the traversal ̂Q contains
edge e.

5. Suppose the growth process at the stem revisit some node g. If g is a node in the
cycle C other than k, then since C is odd, we must have formed a generalized
alternating traversal that is an even cycle.

6. Finally, suppose the revisited node g is on the stem (including k) forming another
cycle C′. If C′ is even, then C′ forms a generalized alternating traversal; other-
wise, we have two odd cycles C and C′ connected by the stem between g and k.
In this case, we have a generalized alternating traversal ̂Q that is a circuit going
through each cycle once and the stem back and forth, which contains edge e.

Note that a generalized alternating traversal obtained from the above growing pro-
cedure has one of the following forms. Apart from the first case of simple even cycle,
the edge e from which the procedure starts is contained in the generalized alternating
traversal.

(a) Simple Even Cycle.
(b) Simple Path.
(c) Lollipop with Odd Cycle. The traversal is a path starting from the end of the

stem, traveling along the stem to some node, then along an odd cycle back to
this node, and then along the stem, finally returning to the end of the stem.

(d) Dumbbell - Two Odd Cycles connected with a path.

Lemma 4 (Growing Feasible Alternating Traversal) Suppose a fixed point (m, α, S)

and a feasible x ∈ L are given as above.

1. Suppose {i, j} ∈ E+ and node j is saturated (we stop if j is unsaturated). Then,
there exists some node k ∈ N(j) \ i such that {j, k} ∈ E−.

2. Suppose {j, k} ∈ E− and αk\j > 0 (we stop if αk\j = 0). Then, there exists
some node l ∈ N(k) \ j such that {k, l} ∈ E+.
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Proof 1. Suppose {i, j} ∈ E+ and node j is saturated. Since
∑

k∈N(j) xjk = bj

and xij < 1, there are at least bj nodes k in N(j) \ i such that xjk > 0. We
pick the k such that mk→j is the smallest. Since Sij ≥ 0, we conclude from
Proposition 4(a) that mi→j ≥ m̂j . It follows that mk→j is at most as large as
the minimum offer to j among bj + 1 offers. Hence, mk→j ≤ m, which implies
from Proposition 4(b) that Sjk ≤ 0. Hence, {j, k} ∈ E−.

2. Suppose {j, k} ∈ E− and αk\j > 0. By Proposition 4(b), Sjk ≤ 0 implies that
mj→k ≤ mk , i.e., node j ’s offer to k is as worst as the (bk + 1)-st offer and so
m̂k = αk\j > 0. Moreover x ∈ L and xjk > 0 implies that there are at most
bk − 1 neighbors i ∈ N(k) \ j such that xik = 1. Suppose l ∈ N(k) \ j such
that xkl < 1 and ml→k is the largest. It follows node l’s offer to k is at least as
good as the bk-th offer and hence ml→k ≥ m̂k > 0, which implies that Skl ≥ 0,
by Proposition 4(a). Hence, we have {k, l} ∈ E+.

Lemma 5 (Unifying Structural Lemma) Suppose edge e ∈ E is critical (with
respect to some fixed point (m, α) and feasible x ∈ L). Then, there exists a feasible
alternating traversal Q; if in addition e is strict and there is no cycle with equal
alternating weight, then Q contains a strict edge.

Proof To find a feasible alternating traversalQ, we apply the growing procedure that
starts from the critical edge e = {i, j}. Moreover, if Q is a simple even cycle, then
by Lemma 3(b), Q contains a strict edge under the “no cycle with equal alternating
weight” assumption; otherwise, Q contains the edge e, in which case e being strict
implies that Q contains a strict edge.

Proof of Lemma 1 It suffices to check the given edge {i, j} is critical in each of the
three cases. Then, Lemma 4 promises the existence of a feasible alternating traversal,
which contains a strict edge where appropriate. Then, Lemmas 3 and 2 guarantee the
existence of feasible x̂ �= x such that w(̂x) ≥ w(x), where strict inequality holds
where appropriate.

5 Achieving Social Welfare with Greedy and Idealistic Users

We saw in Proposition 1 that a Nash Equilibrium m can result in zero social welfare
if users are idealistic. In this section, we investigate under what conditions can a
fixed point (m, α, S) of T achieve good social welfare, even if the underlying payoff
function u is greedy and idealistic. Given m ∈ AE , recall that for each node i, m̂i is
the bi-th best offer to i and mi is the (bi + 1)-st best offer to i. Observe that each
edge e = {i, j} ∈ E falls into exactly one of the following three categories.

1. Greedy Edges: mj→i > mi and mi→j > mj . Edge e will be selected and
ue(m) = 1.

2. Idealistic Edges: mj→i < m̂i or mi→j < m̂j . Edge e will be rejected and
ue(m) = 0.

3. Ambiguous Edges: these are the remaining edges that are neither greedy nor
idealistic.
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Given a fixed point (m, α, S), by Propositions 2 and 3, the category of an edge
e ∈ E can be determined by the sign of Se: greedy (+1), idealistic (-1), ambigu-
ous (0). Observe that after the greedy edges are selected and the idealistic edges are
rejected, even if ambiguous edges are chosen arbitrarily (deterministic or random-
ized) to form a b-matching, the resulting payoff function is still greedy and idealistic.
We first recover the result in [16] for the special case where the LP has a unique
integral optimum, for which we shall see that the ambiguous edges are handled
trivially.

Given a fixed point (m, α, S), the following result implies that there are no
ambiguous edges in this case. Hence, after all the greedy edges are selected,
the optimal social welfare is achieved automatically, and so the price of stability
is 1.

Theorem 4 (Fixed Point and Integral LP) Suppose (m, α, S) is a fixed point of T
and LP has a unique integral optimum x corresponding to the maximum b-matching
M∗. Then, for each edge {i, j} ∈ E, Sij > 0 if and only if xij = 1.

Proof For each edge {i, j} ∈ E, if Sij > 0, then it follows from Theorem 3 (a) that
xij = 1.

If xij = 1, then from Theorem 3 (c) we have Sij ≥ 0. Suppose Sij = 0. Then, from
Proposition 3 (b) we have mj→i = αi\j and mi→j = αj\i . Since mj→i + mi→j =
αi\j +αj\i = wij > 0, at least one ofmj→i andmi→j is positive. Assumemj→i > 0
without loss of generality. Then, m̂i = mi > 0. Let node k be a neighbor of i such
that mk→i = αi\j . Then, we have mk→i = mj→i = αi\k > 0 and thus Sik = 0.
Then, from Theorem 3 (a) we have xik = 1. Since from Proposition 4(a) any l ∈ N(i)

such that ml→i ≥ m̂i > 0 satisfies Sil ≥ 0, we know that there are more than bi

edges incident to node i appear in M∗, which is a contradiction. Therefore, Sij must
be positive.

5.1 Handling Ambiguous Edges

In general, given m ∈ AE , there will be ambiguous edges, and how the ambiguous
edges are handled will affect the payoff function u and the social welfare. However,
observe that a fixed point m of T will remain a Nash Equilibrium no matter how
the ambiguous edges are handled. For the rest of the section, we analyze the social
welfare of a fixed point m.

Since no agent (edge player) has motivation to unilaterally change his action for
fixed point m, and any contract made for an ambiguous edge will be within the best
bi offers for a node i (i.e., if {i, j} ∈ E is ambiguous, then mj→i = m̂i and mi→j =
m̂j ), we can optimize the following, subject to remaining node capacity constraints
b′ (after greedy edges are selected).

– Find a maximum cardinality b′-matching among the ambiguous edges, hence
optimizing the number of contracts made.

– Find a maximum weight b′-matching among the ambiguous edges, hence
optimizing the social welfare.
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ChoosingMaximumWeightMatching amongAmbiguous Edges Observe that a max-
imum cardinality matching can be arbitrarily bad in terms of weight, but a maximum
weight matching must be maximal and so is a 2-approximation for maximum cardi-
nality. Hence, we argue that it makes sense to find a maximum weight b′-matching
among the ambiguous edges. We can imagine this step to be performed centrally or
as a collective decision by the users. From now on, we consider a payoff function u

that results from this selection procedure and analyze the social welfare Su(m) for a
fixed point m of T . Recall that we assume at least one of the following holds: (1) LP
has unique optimum, (2) the graph has no cycle with equal alternating weight.

Analyzing S(m) for Fixed Point m Suppose (m, α, S) is a fixed point and let ̂E :=
{e ∈ E : Se > 0} and E := {e ∈ E : Se = 0}. As observed before, ̂E is the
set of greedy edges and E is the set of ambiguous edges. Suppose H ⊆ E is the
maximum weight b′-matching that is chosen in E by the selection process. Then,
S(m) = ∑

e∈̂E we + ∑

f ∈H wf , which we compare with the value of an optimal LP
solution, which we can assume is half-integral from a standard fact. We include its
proof for completeness.

Fact 2 (Half-Integral LP Optimum) There exists a half-integral optimal solution x to
LP, i.e., for all e ∈ E, xe ∈ {0, 1

2 , 1}.
Proof Let A be the incident matrix of G. It suffices to show that the polytope P =
{x : Ax ≤ b, x ≥ 0 and x ≤ 1} is half-integral, that is, the vertices of P are half-
integral. Note that P is the set of points x satisfying

⎡

⎣

A

I

−I

⎤

⎦ x ≤
⎡

⎣

b

1
0

⎤

⎦ .

Let x be a vertex of P , and without loss of generality assume x = (xf , xg), where xf

of size l and xg of size (m− l) are vectors consisting of fractional and integral entries
of x, respectively. Let A′ be the submatrix of A consisting of the first l columns of A

and b′ = b−A·(0, xg). Then the inequality A′xf ≤ b′ holds and there is a subsystem
(A′′, b′′) of (A′, b′) where A′′ is nonsingular satisfying A′′xf = b′′. Note that A′
is formed from A by deleting columns in A with integral x values. Therefore, A′ is
the incident matrix of a subgraph of G which consists of all edges with fractional
x values. Suppose the subgraph has k connected components C1, C2, · · · , Ck , and
A1, A2, · · · , Ak are their incident matrices, respectively.

In the following proof, when we intend to argue that x is not a vertex of P , we
show that for arbitrarily small δ > 0, there is x′

f of size l satisfying 0 < ‖x′
f −

xf ‖∞ ≤ δ such thatA′′x′
f = b′′ andA′x′

f ≤ b′. We say that x′
f satisfies the closeness

condition. For each edge e with xe ∈ xf , define ge := min(xe, 1 − xe).
Consider the connected component C1 consisting of n1 nodes and m1 edges,

together with the corresponding fractional vector x1 of size m1 and subsystem
(A1, b1). Recall that (A′′, b′′) is a subsystem of (A′, b′) such that A′′ is nonsingu-
lar and A′′xf = b′′. Then there is a subsystem (A′′

1, b
′′
1) of (A1, b1) such that A′′

1 is
nonsingular and A′′

1x1 = b′′
1 . Note that A1 is of dimension n1 × m1. If n1 < m1,
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then there exists a non-zero y1 such that A′′
1(x1 + y1) = b′′

1 and A′′
1(x1 − y1) = b′′

1
while both x1 + y1 and x1 − y1 are in the interval (0, 1). Extending y1 to y of size
m with other entries being 0, we see that both x + y and x − y are in P , which con-
tradicts the fact that x is a vertex of P . Therefore we have n1 ≥ m1. On the other
hand, since C1 is connected, we have m1 ≥ n1 − 1. Then m1 = n1 − 1 or m1 = n1.
That is, C1 is a single node, a path or a graph consisting of one cycle. We define
δm := mine∈E(C1) ge.

We show that C1 cannot contain an even cycle. Assume C1 contains an even cycle
with consecutive edges e1, e2, · · · , e2j . Then for any positive δ < δm we can get a
vector x′

1 defined as

(x′
1)e =

⎧

⎨

⎩

(x1)e + δ if e = ei, where i ∈ [2j ] and i is odd,
(x1)e − δ if e = ei, where i ∈ [2j ] and i is even,
(x1)e otherwise.

Then we know that A1x
′
1 ≤ b1 and A′′

1x
′
1 = b′′

1 . Let x′
f be the vector obtained from

xf by replacing x1 with x′
1, then x′

f satisfies the closeness condition and thus x is not
a vertex of P , which is a contradiction.

Next we show that if C1 is not a single node, each node in C1 is of degree at least
2. Suppose, on the contrary, that C1 contains at least one node with degree 1. Below
we consider two cases.

If there are at least two nodes with degree 1, let D = {q, e1, v2, e2, · · · , w} be
the simple path between any of such two nodes q and w. Since each of q and w is
incident to only one edge with fractional value and b1 is integral, their corresponding
inequalities strictly hold. Given any positive δ < δm define vector x′

1 of size m1 as
follows:

(x′
1)e =

{

(x1)e + δ if e = ei ∈ E(D) and i is odd,
(x1)e − δ if e = ei ∈ E(D) and i is even.

Then we can get a vector x′
f satisfying the closeness condition and leading to a

contradiction.
If C1 has exactly one node with degree 1, then it must be an odd cycle

L = {v1, eL
1 , v2, e

L
2 , · · · , v2j+1, e

L
2j+1, v1} connected to a simple path D =

{w1, e
D
1 , w2, e

D
2 , · · · }. Assume w1 = v1 without loss of generality. Given any

positive δ < δm

2 , define vector x′
1 of size m1 as follows:

(x′
1)e =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(x1)e + δ if e = eL
i and i is odd,

(x1)e − δ if e = eL
i and i is even,

(x1)e − 2δ if e = eD
i and i is odd,

(x1)e + 2δ if e = eD
i and i is even.

Again we can get a vector x′
f satisfying the closeness condition where a contradiction

occurs.
Recall that C1 can not contain any even cycle. Now we know that if C1 is not a

single node, then it must be an odd cycle. In the latter case, the incident square matrix
A1 is nonsingular. Therefore we have A1x1 = b1. It can be shown by induction that
the determinant |A1| = 2. Since b1 is integral, x1 is half-integral by Cramer’s rule.
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Generally, for each connected component Ci , where i ∈ [k], the corresponding
edge vector is either empty or half-integral. In conclusion, xf must be half-integral
and thus x is half-integral.

Propositions 3(b) and (c) state that any optimal LP solution x must set xe = 1 for
a greedy edge e ∈ ̂E, and set xe = 0 for a idealistic edge e. Hence, we analyze the
contribution of the ambiguous edges to the optimal value.

Lemma 6 (Integrality Gap) Suppose x is a half-integral solution to LP (with node
capacity vector b′) that takes non-zero values on the edge set E′ . Then, there exists
a b′-matching H in E′ such that w(H) ≥ 2

3

∑

e∈E′ we · xe.

Proof Since x is half-integral, we can first include all edges e ∈ E′ such that xe = 1
in H ; this ensures that for edges e such that xe = 1, they contribute the same to
w(H) and w(x). We next transform the solution x, if necessary, such that the set J

of 1
2 -edges form vertex-disjoint odd cycles.
Observe that if there is a node i such that its degree in J is odd, then there must

exist a path in J from i to another odd degree node j ; moreover, both i and j are
unsaturated in x. Hence, using standard alternating path argument, we can transform
the solution x without decreasingw(x) such that all edges on the path has value either
0 or 1.

We can now assume that all degrees of nodes in J are even. Hence, each connected
component in J has an Euler circuit. If the circuit is even, then again we can use
alternating circuit argument to choose a solution (without decreasing its value) such
that all edges on the circuit is either 0 or 1. If the circuit is odd but not simple, then
there must be an even circuit, which can be eliminated again; hence, any remaining
edges in J form vertex-disjoint odd cycles.

Consider each odd cycle C. Observe that the edges in C can be partitioned into
three sets C1, C2 and C3 such that each set forms a (1-)matching; moreover, the
contribution of C to the value of w(x) solution is 1

2w(C) = ∑

e∈C wexe. Hence, if
we pick the Cr with the largest weight and include it in H , then we have w(Cr) ≥
1
3w(C) = 2

3

∑

e∈C wexe.
Since H gets the same contribution as w(x) from integral edges and at least 2

3
fraction from the fractional edges, it follows that w(H) is at least 2

3w(x), as required.

We summarize the main result of this section in the following theorem.

Theorem 5 (Price of Stability) Suppose the given graph has no cycle with equal
alternating weight or LP has unique optimum. Then, there exists a greedy and ideal-
istic payoff function u such that any fixed point m of T is a Nash Equilibrium inNu;
moreover, the social welfare Su(m) ≥ 2

3SLP ≥ 2
3 maxm′∈AE

Su(m
′), showing that the

Price of Stability is at most 1.5

Proof The statements about fixed point and Nash Equilibrium follow from Theo-
rem 2. We focus on analyzing the social welfare of a fixed point m under the payoff
function u that results from choosing a maximum weight matching H from the set of
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ambiguous edges E. Suppose x is an optimal solution to LP. Since greedy edges ̂E

will be chosen under m, we have S(m) = ∑

e∈̂E we + ∑

f ∈H wf .
Suppose x ∈ L is an optimal solution to LP, i.e., w(x) = SLP. Observe that

Theorem 3(b) implies that for e ∈ ̂E, xe = 1, and Theorem 3(c) implies that for e ∈ E

such that xe > 0, e ∈ ̂E∪E. Hence, it follows that SLP = ∑

e∈̂E we +∑

f ∈E xf ·wf .

Observe that x restricted to E is still an optimal solution to the LP restricted to E

with remaining node capacity vector b′ (after accounting for the greedy edges). Then,
from Lemma 6, we have

∑

f ∈H wf ≥ 2
3

∑

f ∈E xf · wf , and hence S(m) ≥ 2
3SLP,

as required.

Remark 1 We remark that if we use a distributed algorithm such as [18, 19, 21] to
find a (1 + c)-approximate maximum matching among the ambiguous edges, then
we can show that the resulting price of stability is at most 1.5(1 + c).

6 Rate of Convergence: ε-Greedy and ε-Idealistic Users

Although the iterative protocol described in Algorithm 1 will converge to some fixed
point (m, α, S), it is possible that a fixed point will never be exactly reached. How-
ever, results in Sections 4 and 5 can be extended if we relax the notions of greedy and
idealistic users.

Suppose ε ≥ 0. We say the payoff function u is ε-greedy (or the users are ε-
greedy), if for each e = {i, j} ∈ E and m ∈ AE , if mj→i > mi + ε and mi→j >

mj + ε, then ue(m) = 1. We say the payoff function u is ε-idealistic, if for each
e = {i, j} ∈ E and m ∈ AE , if mj→i < m̂i − ε, then ue(m) = 0. Given m ∈ AE , we
can place each edge e = {i, j} ∈ E in the following ε-categories (with respect to m).

1. ε-Greedy Edges: mj→i > mi + ε and mi→j > mj + ε. If u is ε-greedy, then
ue(m) = 1.

2. ε-Idealistic Edges: mj→i < m̂i − ε or mi→j < m̂j − ε. If u is ε-idealistic, then
ue(m) = 0.

3. ε-Ambiguous Edges: these are the remaining edges that are neither ε-greedy
nor ε-idealistic.

As in Section 5, we consider an ε-greedy and ε-idealistic payoff function u

that corresponds to the selection process of finding a maximum weight matching
among the ε-ambiguous edges, after accepting the ε-greedy edges and rejecting the
ε-idealistic edges.

Recall that given α ∈ [0, W ]2|E|, m = m(α) ∈ AE is defined by (2). We shall use
the following fact about convergence.

Fact 3 (Convergence) Suppose the sequence {α(t)} converges to α ∈ [0, W ]2|E|
under the �∞ norm, where each α(t) and α define m(t) and m respectively. Then, for
all ε > 0, there exists T > 0 such that for all t ≥ T , the following holds.

1. For all {i, j} ∈ E, |mj→i − m
(t)
j→i | ≤ ε and |αi\j − α

(t)
i\j | ≤ ε.
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2. For all i ∈ V , |m̂i − m̂
(t)
i | ≤ ε and |mi − m

(t)
i | ≤ ε.

Theorem 6 (Convergence of Social Welfare) Suppose the given graph has no cycle
with equal alternating weight or LP has a unique optimum. For any ε > 0, there
exists an ε-greedy and ε-idealistic payoff function u such that the following holds.
For any sequence {(m(t), α(t))} produced by the iterative protocol in Algorithm 1,
there exists T > 0 such that for all t ≥ T , the social welfare Su(m

(t)) ≥ 2
3SLP.

Proof Fix ε > 0. By Theorem 1, the sequence {(m(t), α(t))} converges to (m, α).
Consider the ε-greedy and ε-idealistic payoff function u, that when acting on m(t),

corresponds to selecting a maximum matching among the ε-ambiguous edges E
(t)
,

after selecting the ε-greedy edges ̂E(t) (both with respect to m(t)).
Suppose ̂E is the set of greedy edges and E is the set of ambiguous edges, both

with respect to m. Observe that as long as the payoff function u is conservative in
selecting greedy edges (i.e., ̂E(t) ⊆ ̂E) and rejecting idealistic edges (i.e., ̂E ∪ E ⊆
̂E(t) ∪ E

(t)
), then Su(m

(t)) ≥ Sû(m) ≥ 2
3SLP, where û is the greedy and idealistic

payoff function as in Theorem 5.
Hence, it suffices to show that for large enough t , both ̂E(t) ⊆ ̂E and ̂E ∪ E ⊆

̂E(t) ∪ E
(t)

hold.
Let T > 0 be large enough such that the upper bounds in Fact 3 hold with ε

2 .
Consider t ≥ T .

To prove ̂E(t) ⊆ ̂E, it suffices to show that any ε-greed edge e = {i, j} with
respect to m(t) is greedy with respect to m. Observe that m(t)

j→i > m
(t)
i + ε, |m(t)

j→i −
mj→i | ≤ ε

2 and |m(t)
i − mi | ≤ ε

2 imply that mj→i > mi .

Similarly, to prove that ̂E ∪ E ⊆ ̂E(t) ∪ E
(t)
, it suffices to show that any ε-

idealistic edge e = {i, j} with respect to m(t) is idealistic with respect to m. One also
observes that m(t)

j→i < m̂
(t)
i − ε, |m(t)

j→i −mj→i | ≤ ε
2 and |m̂(t)

i − m̂i | ≤ ε
2 imply that

mj→i < m̂i .

6.1 Rate of Convergence

Although the result in [14] shows that the configurations given by the iterative proto-
col will converge to a fixed point, it does not give the rate of convergence. However,
a result by Baillon and Bruck [3] tells us how fast the protocol can arrive at an
approximate fixed point.

Given δ ≥ 0, a δ-fixed point α for a function T satisfies ||α − T (α)||∞ ≤ δ.

Proposition 5 ([3]) Suppose the maximum edge weight is W . Then, after iteration t

of the distributed protocol in Algorithm 1, the α(t) ∈ [0, W ]2|E| returned is a O( W√
t
)-

fixed point of T .

We also need a modified technical assumption on the network topology. Given
λ ≥ 0, a cycle is said to have λ-equal alternating weight if it is even, and the sum of
the even edge weights differs from the sum of the odd edge weights by at most λ. We
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remark that all our arguments in Sections 4 and 5 can be extended to δ-fixed points,
and ε-greedy and ε-idealistic payoff functions in a straightforward manner. We state
the following result and defer the proof to the next section.

Theorem 7 (δ-Fixed Point, ε-Greedy and ε-Idealistic, and LP Optimum) Suppose
ε > 0 and the given graph has no cycle with ε-equal alternating weight. Suppose
further that (m, α, S) is a δ-fixed point of T , where δ = O( ε

|V |2 ), and x ∈ L is an
optimal solution to LP. Then, the following holds.

1. If an edge e is ε-greedy with respect to m, then xe = 1.
2. If an edge e is ε-idealistic with respect to m, then xe = 0.

Applying Proposition 5 and Theorem 7 to previous analysis can give the following
theorem.

Theorem 8 (Rate of Convergence) Suppose ε > 0, and the given graph has max-
imum edge weight W and has no cycle with ε-equal alternating weight. Then, there
exists an ε-greedy and ε-idealistic payoff function u such that the following holds.
For any sequence {(m(t), α(t))} produced by the iterative protocol in Algorithm 1,

and for all t ≥ 	(
W 2|V |4

ε2
), the social welfare Su(m

(t)) ≥ 2
3SLP.

6.2 δ-Fixed Point and LPOptimum

In this section we prove Theorem 7. Note that Proposition 3 holds for a δ-fixed point
of T . We further state the following properties for a δ-fixed point.

Proposition 6 (δ-Fixed Point) Suppose (m, α, S) is a δ-fixed point of T . Then for
each {i, j} ∈ E and c ≥ 0, the following properties hold.

(a) αi\j ≤ m̂i + δ and αi\j ≥ mi − δ.
(b) If mj→i ≥ αi\j − c, then mj→i ≥ m̂i − c − δ.
(c) If mj→i ≤ αi\j + c, then mj→i ≤ mi + c + δ.
(d) If mj→i > 0 and mj→i ≥ m̂i − c, then mi→j ≥ m̂j − c − 2δ.
(e) If mj→i > 0 and mj→i ≥ m̂i − c, then m̂i + m̂j ≤ wij + 2c + 2δ.
(f) If mj→i ≤ mi + c, then mi→j ≤ mj + c + 2δ.
(g) If mj→i ≤ mi + c, then m̂i + m̂j ≥ wij − 2c − 2δ.
(h) Suppose further that c ≥ δ. If mj→i < m̂i − c, then m̂i + m̂j > wij + c − δ.

Proof (a) This follows directly from the definition of α and δ-fixed point, observ-
ing that mi ≤ T (α)i\j ≤ m̂i .

(b) The result is true, if mj→i ≥ m̂i ; hence we assume mj→i < m̂i , which implies
T (α)i\j = m̂i . Therefore, by the definition of δ-fixed point, we have |αi\j −
m̂i | ≤ δ and thus mj→i ≥ αi\j − c ≥ m̂i − δ − c. Therefore, we always have
mj→i ≥ m̂i − c − δ.

(c) The result is true, if mj→i ≤ mi ; hence we assume mj→i > mi , which implies
T (α)i\j = mi . Therefore, by the definition of δ-fixed point, we have |αi\j −
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mi | ≤ δ and thus mj→i ≤ αi\j + c ≤ mi + δ + c. Therefore, we always have
mj→i ≤ mi + c + δ.

(d) Consider the following cases.

– Ifmj→i > αi\j , then from Proposition 3 we have Sij > 0 and thusmi→j >

αj\i . From (b) we have mi→j ≥ m̂j − δ.
– If mj→i ≤ αi\j , then from Proposition 3 we have Sij ≤ 0 and thus mj→i =

wij−αj\i = αi\j+Sij . We also havemj→i ≥ m̂i−c ≥ αi\j−δ−c from (a).
So Sij ≥ −c−δ. Then mi→j = (wij −αi\j )+ ≥ αj\i +Sij ≥ αj\i −c−δ.
From (b), we have mi→j ≥ m̂j − c − 2δ.

(e) From (d) we have m̂i + m̂j ≤ mj→i + mi→j + 2δ + 2c ≤ wij + 2δ + 2c.
(f) Consider the following cases.

– Ifmj→i > αi\j , then from Proposition 3 we have Sij > 0 and thusmj→i =
αi\j + 1

2Sij . We also have mj→i ≤ mi + c ≤ αi\j + δ + c, from (a). Hence,
1
2Sij ≤ c+ δ. Then mi→j = αj\i + 1

2Sij ≤ αj\i + c+ δ. From (c), we have
mi→j ≤ mj + c + 2δ.

– If mj→i ≤ αi\j , then from Proposition 3 we have Sij ≤ 0 and thus mi→j ≤
αj\i . From (c) we have mi→j ≤ mj + δ.

(g) Consider the following cases.

– If Sij > 0, then from (f) we have m̂i + m̂j ≥ mi + mj ≥ mj→i + mi→j −
2c − 2δ = wij − 2c − 2δ.

– If Sij ≤ 0, then from (a) we have m̂i + m̂j ≥ αi\j + αj\i + 2δ ≥ wij + 2δ.

(h) Since mj→i < m̂i − c implies that T (α)i\j = m̂i , then by the definition of
δ-fixed point we have |αi\j − m̂i | ≤ δ. Since c ≥ δ, we have mj→i < m̂i −
c ≤ αi\j + δ − c ≤ αi\j , that is mj→i < αi\j . From Proposition 3, we have
Sij < 0 and thus mj→i = (wij −αj\i )+. Observe that m̂j ≥ αj\i − δ, from (a).
Therefore, we have m̂i+m̂j > (mj→i+c)+(αj\i−δ) = (mj→i+αj\i )+c−δ =
((wij − αj\i )+ + αj\i ) + c − δ ≥ wij + c − δ.

Observe that Theorem 7 can be implied by the following lemma.

Lemma 7 (δ-Fixed Point and LP Optimum) Suppose ε > 0 and the given graph has
no cycle with ε-equal alternating weight and further that x is a feasible solution of
LP. Then there exists a δ-fixed point (m, α, S) of T , where δ = O( ε

|V |2 ), such that
for each {i, j} ∈ E, the following properties hold.

(a) If there exists an edge e such that e is ε-greedy and xe < 1, then there exists
x̂ ∈ L such that x̂ �= x and w(̂x) > w(x).

(b) If there exists an edge e such that e is ε-idealistic and xe > 0, then there exists
x̂ ∈ L such that x̂ �= x and w(̂x) > w(x).

In the rest of this paper we assume ε is sufficiently larger than δ, say ε = 
(n2δ).
Similarly to the argument used in Section 4, we use a unifying framework of (ε, δ)-
alternating traversal.
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(ε, δ)-Alternating Traversal Given a δ-fixed point (m, α, S) of T and a feasible
solution x ∈ L, we define a structure called (ε, δ)-alternating traversal as follows.

1. A (ε, δ)-alternating traversal Q (with respect to (m, α, S) and x) is a path or
circuit (not necessarily simple and might contain repeated edges). Q alternates
between two disjoint edge setsQ+ andQ− (henceQ can be viewed as a multiset
which is the disjoint union of Q+ and Q−) such that Q+ ⊂ S+ and Q− ⊂ S−,
where S+ := {{i, j} ∈ E : mj→i ≥ m̂i − ε and mi→j ≥ m̂j − ε} is the set
of edges that are not ε-idealistic, and S− := {{i, j} ∈ E : mj→i ≤ mi +
ε or mi→j ≤ mj + ε} is the set of edges that are not ε-greedy. We require that
an edge appearing for multiple times inQ cannot appear both in Q+ and in Q−.

The (ε, δ)-alternating traversal is called feasible if in addition Q+ ⊂ E+ and
Q− ⊂ E−, where E+ := {e ∈ S+ : xe < 1} and E− := {e ∈ S− : xe > 0}. An
edge e is called critical if e is in exactly one of E+ and E−, and is called ε-strict
if e is either ε-greedy or ε-idealistic. Hence, the edges in statements (a) and (b)
of Lemma 7 are both critical and ε-strict.

2. The following additional properties must be satisfied if the traversal Q is a path.
If one end of the path has edge {i, j} ∈ Q+ and end node i, then i is unsaturated
under x, i.e.,

∑

e:i∈e xe < bi ; if the end has edge {i, j} ∈ Q− and end node i,
then (T (α))i\j = 0.

Observe that there is a special case where the path starts and ends at the same
node i; we still consider this as the path case as long as the end node conditions
are satisfied for both end edges (which could be the same).

3. As described in Section 4, the alternating traversal is obtained from the growing
procedure starting from some seed edge, which in this case is both critical and
ε-strict. Observe that the alternating traversal might not contain the seed edge.

Lemma 8 ((ε, δ)-Alternative Feasible Solution.) Suppose Q is a feasible (ε, δ)-
alternating traversal with respect to some feasible x ∈ L. Then, there exists feasible
x̂ �= x such that w(̂x) − w(x) has the same sign ({−1, 0, +1}) as w(Q+) − w(Q−).

Proof The proof is exactly the same as that of Lemma 2.

In view of Lemma 8, it suffices to show that we can find a feasible (ε, δ)-traversal
Q such that w(Q+) − w(Q−) > 0. We make use of the following slack variables for
each edge to analyze the weights of the edges.

Slack Variables For each edge e ∈ Q, there exists some ce ≥ 0 such that

(a) for e = {i, j} ∈ Q+ that is grown from i, mj→i ≥ m̂i − ce; define de :=
m̂i + m̂j − wij .

(b) for e = {j, k} ∈ Q− that is grown from j , mk→j ≤ mj + ce; define de :=
wjk − (m̂j + m̂k).

Observe that by Proposition 6(e) and (g), we have de ≤ 2ce + 2δ.
We show that there is some way to grow the alternating traversal such that the

slack variables can be kept small. Given an edge e, its hop number is the number of
steps away from the seed edge in the growing procedure. For instance, the seed edge
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has hop number 0 and the next edge grown adjacent to the seed edge has hop number
1, and so on.

Lemma 9 (Growing Feasible (ε, δ)-Alternating Traversal) Suppose a δ-fixed point
(m, α, S) and a feasible x ∈ L are given as above. Assume that c ≥ 0 is a constant.

1. Suppose {i, j} ∈ E+ such that mj→i > 0 and mj→i ≥ m̂i − c. Suppose further
c ≤ ε −2δ and that node j is saturated (we stop if j is unsaturated). Then, there
exists some node k ∈ N(j) \ i such that {j, k} ∈ E− and mk→j ≤ mj + c + 2δ.

2. Suppose {j, k} ∈ E− such that mk→j ≤ mj + c. Suppose further c ≤ ε − 4δ
and (T (α))k\j > 0 (we stop if (T (α))k\j = 0). Then, there exists some node
l ∈ N(k) \ j such that {k, l} ∈ E+, ml→k > 0 and ml→k ≥ m̂k − c − 2δ.

In particular, it follows that an edge e with hop number t has ce ≤ (2t + 2)δ.

Proof 1. Suppose {i, j} ∈ E+ such that mj→i > 0 and mj→i ≥ m̂i − c and node
j is saturated. Since xij < 1 and

∑

k∈N(j) xjk = bj , there are at least bj nodes
k in N(j) \ i such that xjk > 0. We pick the k such that mk→j is the smallest.
Then it follows that mk→j ≤ (T (α))j\i . Since mj→i > 0 and mj→i ≥ m̂i − c,
from Proposition 6(d) we have mi→j ≥ m̂j − c − 2δ. If mi→j ≥ m̂j , then
mk→j ≤ (T (α))j\i = mj . Otherwise, mi→j ≤ mj and thus m̂j − mj ≤ c + 2δ.
Then mk→j ≤ (T (α))j\i = m̂j ≤ mj + c + 2δ.

To show {j, k} ∈ E−, it suffices to prove that {j, k} ∈ Q−. With the condition
c ≤ ε − 2δ, we have mk→j ≤ mj + ε. Therefore {j, k} ∈ Q−.

2. Suppose {j, k} ∈ E− such that mk→j ≤ mj + c and (T (α))k\j > 0. Then
x ∈ L and xjk > 0 implies that there are at most bk − 1 neighbors i ∈ N(k) \ j

such that xik = 1. Suppose l ∈ N(k) \ j such that xkl < 1 and ml→k is the
largest. Then it follows that ml→k ≥ (T (α))k\j > 0. Since mk→j ≤ mj + c,
from Proposition 6(f) we have mj→k ≤ mk + c + 2δ. If mj→k ≤ mk , then
ml→k ≥ (T (α))k\j = m̂k . Otherwise, mj→k ≥ m̂k and thus m̂k − mk ≤ c + 2δ.
Then ml→k ≥ (T (α))k\j = mk ≥ m̂k − c − 2δ.

To show {k, l} ∈ E+, it suffices to prove that {k, l} ∈ Q+. With the condition
c ≤ ε − 2δ and Proposition 6(d), we have ml→k ≥ m̂k − c − 2δ ≥ m̂k − ε and
mk→l ≥ m̂l − c − 4δ ≥ m̂l − ε. Therefore {k, l} ∈ Q+.

Moreover, if e0 := {x, y} is the seed edge corresponding to some (ε, δ)-alternating
traversal, then either i) e0 is ε-greedy, i.e., my→x > mx + ε and mx→y > my + ε,
which implies my→x ≥ m̂x and mx→y ≥ m̂y ; or ii) e0 is ε-idealistic, i.e., my→x <

m̂x − ε or mx→y < m̂y − ε, which implies my→x ≤ mx or mx→y ≤ my , indicating
that my→x ≤ mx + 2δ and mx→y ≤ my + 2δ by Proposition 6(f). Hence, we have
ce0 ≤ 2δ. By induction, it is obvious that an edge e with hop number t satisfies
ce ≤ (2t + 2)δ.

Observe that each edge appears at most twice in the traversal and has hop number
at most 2n − 1 from the seed edge. Hence, from Lemma 9, for all edges e ∈ Q, we
have ce ≤ 4nδ and de ≤ (8n + 2)δ.
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Lemma 10 (Property of End Node) Suppose an (ε, δ)-alternating traversal Q is a
path and i is an end node with {i, j} ∈ Q−. If mj→i ≤ mi + c, then m̂i ≤ c, where
c ≥ 0 is a constant.

Proof From the definition of (ε, δ)-alternating traversal, we have (T (α))i\j = 0. If
mj→i < m̂i , then m̂i = (T (α))i\j = 0 ≤ c. Suppose mj→i ≥ m̂i . Then mi =
(T (α))i\j = 0. Therefore m̂i ≤ mj→i ≤ mi + c = c.

Lemma 11 (Analyzing Weight with Slack Variables) Given an (ε, δ)-alternating
traversalQ, we have w(Q+) − w(Q−) ≥ − ∑

e∈Q rQ(e) · de − 8nδ, where rQ(e) is
the number of times e appears in Q.

Proof Let VQ be the set of nodes that appear in the traversal Q. For all v ∈ VQ,
define Ev := {e ∈ Q : e is incident to v}. Consider the following two cases.

(1) Q is a circuit. Then for all v ∈ VQ, we have |Q+ ∩ Ev| = |Q− ∩ Ev|.
By the definition of the slack variable d , we have

∑

e1∈Q+ rQ+(e1)(we1 +
de1) = ∑

e2∈Q− rQ−(e2)(we2−de2). Rearranging the equality impliesw(Q+)−
w(Q−) = − ∑

e∈Q rQ(e)de ≥ − ∑

e∈Q rQ(e)de − 8nδ.
(2) Q is a path. Define VQ+ := {x ∈ VQ : x is an end point of Q with {x, y} ∈

Q+} and VQ− := {x ∈ VQ : x is an end point of Q with {x, y} ∈ Q−}. Then,
for any v ∈ VQ, we have the following claims.

(a) If v ∈ VQ+ , then |Q+ ∩ Ev| − |Q− ∩ Ev| = 1.
(b) If v ∈ VQ− , then |Q− ∩ Ev| − |Q+ ∩ Ev| = 1.
(c) if v ∈ VQ \ (VQ+ ∪ VQ−), then |Q+ ∩ Ev| = |Q− ∩ Ev|.

Note that for all e ∈ Q, we have ce ≤ 4nδ. Then from Lemma 10,
for any v ∈ VQ− we have m̂v ≤ 4nδ. Also observe that |VQ−| ≤ 2.
Then, by the definition of the slack variable d , we have w(Q+) − w(Q−) =
− ∑

e∈Q rQ(e)de + ∑

v1∈VQ+ m̂v1 − ∑

v2∈VQ− m̂v2 ≥ − ∑

e∈Q rQ(e)de + 0−
2 · 4nδ = − ∑

e∈Q rQ(e)de − 8nδ.

We can obtain an (ε, δ)-alternating traversalQ by applying the growing procedure
as described in Section 4, which in this case starts from a seed edge e0 that is critical
and ε-strict, and goes with the rules setR indicated in Lemma 9. Observe that either
Q is a simple even cycle or it contains the seed edge e0.

Lemma 12 ((ε, δ)-Alternating Traversal Weight) Suppose that we have a δ-fixed
point (m, α, S) and a feasible solution x to LP. Suppose further δ = ε

22n2
and there

is no cycle with ε-equal alternating weight. Then, the growing procedure gives an
(ε, δ)-alternating traversal Q such that w(Q+) > w(Q−).

Proof We consider the following two cases.

(1) The traversalQ is a simple even cycle. By the no cycle with ε-equal alternating
weight assumption, we have |w(Q+) − w(Q−)| > ε. Observe that any e ∈ Q
satisfies de ≤ (8n + 2)δ. Also note that |Q| ≤ 2n. Then from Lemma 11, we
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havew(Q+)−w(Q−) ≥ − ∑

e∈Q rQ(e)·de ≥ −2n(8n+2)δ ≥ −ε. Therefore,
w(Q+) − w(Q−) ≥ ε > 0.

(2) The traversal Q is a simple path, lollipop with odd cycle or dumbbell. In this
case e0 := {x, y} ∈ Q. Then one of the following two cases happens.

(a) The seed edge e0 is ε-idealistic. Then either my→x < m̂x − ε or mx→y <

m̂y −ε. From Proposition 6(h) we have m̂x +m̂y > wxy +ε−δ. Since e0 ∈
Q−, we have de0 < −(ε − δ) < 0. Therefore, from Lemma 11 we have
w(Q+)−w(Q−) ≥ − ∑

e∈Q rQ(e)·de−8nδ ≥ − ∑

e∈Q\{e0} rQ(e) · de−
de0 − 8nδ > −(2n − 1)(8n + 2)δ + (ε − δ) − 8nδ ≥ 0.

(b) The seed edge e0 is ε-greedy. Then my→x > mx +ε and mx→y > my +ε,
which implies my→x ≥ m̂x and mx→y ≥ m̂y . Note that e0 ∈ Q+. Let
e1 := {y, z} ∈ Q− be the edge next to e0 in the traversal Q. If we know
that either de0 < −(ε−4δ) or de0+de1 < −(ε−4δ), then from Lemma 11,
we have w(Q+)−w(Q−) ≥ − ∑

e∈Q rQ(e) ·de −8nδ > −(2n−1)(8n+
2)δ + (ε − 4δ) − 8nδ ≥ 0.

To finish the proof, we only need to show that de0 < −(ε − 4δ) or
de0 + de1 < −(ε − 4δ).

Note that (T (α))y\x = my and thus |αy\x − my | ≤ δ. Then mx→y >

my + ε > my + δ ≥ αy\x , which implies Sxy > 0, from Proposition 3.
Hence, mx→y + my→x = wxy . Define gy := m̂y − my ≥ 0. Then de0 =
m̂x + m̂y − wxy ≤ my→x + (g + my) − wxy < my→x + (g + mx→y −
ε) − wxy = −(ε − g).

– If g ≤ 4δ, then de0 < −(ε − g) ≤ −(ε − 4δ).
– If g > 4δ, then from the growing procedure we know that mz→y ≤

my + 2δ = m̂y − g + 2δ < m̂y − (g − 3δ). Since g − 3δ ≥ δ, then
from Proposition 6(h) we have de1 < −(g − 3δ) + δ = −(g − 4δ).
Therefore, de0 + de1 < −(ε − g) − (g − 4δ) = −(ε − 4δ).

In both cases (a) and (b), we have w(Q+) − w(Q−) > 0.
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